P. Savy et al. / Bioorg. Med. Chem. Lett. 10 (2000) 2287±2289
Table 1. The 29-mer ds DNA target was hybridized with its com-
2289
Acknowledgements
plementary third strand I±III (1.2 mM) in the indicated buer
Double-stranded 29-mer DNA target
We thank the `Association pour la Recherche contre le
Cancer' (ARC), the `Fondation pour la Recherche
Medicale' (FRM) and the MERT for ®nancial support
(to P.S. and R.M.). We are grateful to Dr. M. Thomas
for oligonucleotide syntheses.
30-CGTGAAAAA-TTTTCTTTTCCCCCCT-GACC-50
50-CCACTTTTT-AAAAGAAAAGGGGGGA-CTGG-30
Complementary third strands
I
50-TTTTCTTTTCCCCCCT-30
II
50-L1L1L1L1CTTTTCCCCCCT-30L1=11
III 50-L2L2L2L2CTTTTCCCCCCT-30L2=12
References and Notes
TFO
T3m!2 (ꢀC)a for
triplex±duplex
transition
1. Reviews: (a) Thuong, N. T.; Helene, C. Angew. Chem., Int.
Ed. Engl. 1993, 32, 666. (b) Frank-Kamenetskii, M. D.; Mir-
kin, S. M. Annu. Rev. Biochem. 1995, 64, 65. (c) Doronina, S.
O.; Behr, J.-P. Chem. Soc. Rev. 1997, 63. (d) Neidle, S. Anti-
Cancer Drug Design 1997, 12, 433. (e) Plum, G. E. Biopolymers
1997, 44, 241. (f) Gowers, D. M.; Fox, K. R. Nucleic Acids
Res. 1999, 27, 1569. (g) Praseuth, D.; Guieysse, A. L.; Helene,
C. Biochim. Biophys. Acta 1999, 1489, 181.
2. (a) Shimizu, M.; Konishi, A.; Shimada, Y.; Inoue, H.;
Ohtsuka, E. FEBS Lett. 1992, 302, 155. (b) Roberts, R. W.;
Crothers, D. M. Science 1992, 258, 1463. (c) Escude, C.; Sun,
J.-S.; Rougee, M.; Garestier, T.; Helene, C. C. R. Acad. Sci.
III 1992, 315, 521. (d) Ascensio, J. L.; Carr, R.; Brown, T.;
Lane, A. N. J. Am. Chem. Soc. 1999, 121, 11063.
3. Wengel, J. Acc. Chem. Res. 1999, 32, 301 and references
cited therein.
4. (a) Obika, S.; Morio, K.; Nanbu, D.; Imanishi, T. J. Chem.
Soc., Chem. Commun. 1997, 1643. (b) Obika, S.; Nanbu, D.;
Hari, Y.; Andoh, J.; Morio, K.; Doi, T.; Imanishi, T. Tetra-
hedron Lett. 1998, 39, 5401.
5. Obika, S.; Morio, K.; Hari, Y.; Imanishi, T. Bioorg. Med.
Chem. Lett. 1999, 9, 515.
6. Jones, G. H.; Taniguchi, M.; Tegg, D.; Moatt, J. G. J.
Org. Chem. 1979, 44, 1309.
7. To date, we have not yet investigated the reaction condi-
tions which would favour one cyclization pathway over the
other (30 vs 20). An elegant solution to this problem might be
adapted from a recent work (Obika, S.; Hari, Y.; Morio, K.;
Imanishi, T. Tetrahedron Lett. 2000, 41, 215).
I
II
III
24
30
5
aT3m!2=melting temperature value (Æ1 ꢀC).
observe that incorporation of 40,20-locked nucleosides in
II provides 1.5 ꢀC stabilization per substitution as com-
pared to I.
This enhanced stability was expected since in 40,20-
locked nucleosides the sugar is constrained in C30-endo
conformation.3 In this respect, it is well known that
pyrimidine-motif triple helix formation is favoured by
20-substituents inducing C30-e0ndo conformation as
observed in the 20-methoxy or 2 -OH (RNA) series.2 In
contrast, a dramatic destabilization is observed with
40,30-locked nucleosides as present in III. This indicates
that, unlike to duplex DNA hybridization,5 such an
oligonucleotide, characterized by 20,50-phosphodiester
bonds and sugar moieties blocked in the C20-endo con-
formation, is unable to form stable enough triple helix
structures.
In conclusion, we have designed a new route to synthe-
size locked pyrimidine nucleosides 11 and 12 and we
have shown that the substitution of 20-deoxythymidine
by the corresponding uridine derived 40,20-locked
nucleoside residue 11 enhances the thermal stability in
the case of a pyrimidine-motif triple helix. It con®rms
also that the correct conformational pre-organization of
TFO favours the interaction between a TFO and its
target duplex sequence.10
8. Yoshimura, J.; Yamaura, M.; Suzuki, T.; Hashimoto, H.
Chem. Lett. 1983, 1001.
9. Oligonucleotides syntheses were performed on an Applied
Biosystem 392 synthesizer on a 1 mM scale using standard
synthesis cycle. After complete deprotection, oligonucleotides
were fully puri®ed by RP18 HPLC.
10. All intermediates and ®nal compounds were characterized
by their analytical and spectral data.