LETTER
Palladium-Catalyzed Monoarylation of Aryl Amine
957
(2) (a) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534.
Nitrogen-containing heterocycles are interesting sub-
strates for the N-arylation since many pharmaceuticals
possess such functionality.16 The catalyst system was ef-
ficient for the coupling reaction of indole and aryl tosy-
lates. N-Benzylindole (3ai) was obtained in 67% (Table 2,
entry 14), and no C-arylation product was isolated. The
weaker nucleophilicity and more steric hindrance of in-
dole relative to primary amine led to the decrease of the
coupling yield.
(b) Ikawa, T.; Barder, T. E.; Biscoe, M. R.; Buchwald, S. L.
J. Am. Chem. Soc. 2007, 129, 13001. (c) Littke, A. F.; Fu,
G. C. Angew. Chem. Int. Ed. 2002, 41, 4176.
(d) Christmann, U.; Vilar, R. Angew. Chem. Int. Ed. 2005,
44, 366.
(3) Munday, R. H.; Martinelli, J. R.; Buchwald, S. L. J. Am.
Chem. Soc. 2008, 130, 2754.
(4) (a) Jutand, A.; Hii, K. K. M.; Thornton-Pett, M.; Brown,
J. M. Organometallics 1999, 18, 5367. (b) Alcazar-Roman,
L. M.; Hartwig, J. F.; Liable-Sands, L. M.; Guzei, I. A.
J. Am. Chem. Soc. 2000, 122, 4618. (c) Alcazar-Roman, L.
M.; Hartwig, J. F. Organometallics 2002, 21, 491. (d) Roy,
A. H.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 8704.
(5) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1998, 120,
7369.
Moreover, the catalytic system was efficient for the cou-
pling reaction of aryl tosylate and (diphenylmethy-
lene)hydrazine, the desired product N-aryl hydrazone, an
important intermediate for the synthesis of indoles,17 was
obtained in 62% yield (Table 2, entry 15).
(6) For C–N bond formation, see: (a) Klapars, A.; Campos,
K. R.; Chen, C.; Volante, R. P. Org. Lett. 2005, 7, 1185.
(b) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars,
A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653.
(c) Vo, G. D.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131,
11049. For C–C bond formation: (d) Ackermann, L.;
Althammer, A.; Fenner, S. Angew. Chem. Int. Ed. 2009, 48,
201. (e) Gooßen, L. J.; Rodríguea, N.; Lange, P. P.; Linder,
C. Angew. Chem. Int. Ed. 2010, 49, 111. (f) Choy, P. Y.;
Chow, W. K.; So, C. M.; Lau, C. P.; Kwong, F. Y. Chem.
Eur. J. 2010, 16, 9982. (g) Pschierer, J.; Plenio, H. Eur. J.
Org. Chem. 2010, 2934. (h) Munday, R. H.; Martnelli, J. R.;
Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 2754.
(i) Zhang, L.; Wu, J. J. Am. Chem. Soc. 2008, 130, 12250.
(j) Bhayana, B.; Fors, B.; Buchwald, S. L. Org. Lett. 2009,
11, 3954.
In addition, the activity of tosylates relative to chlorides
was also investigated. In our catalytic system, aryl chlo-
rides reacted faster than aryl tosylates. The reaction of 4-
chlorophenyl tosylate led to a coupling product at the C–
Cl bond (Scheme 1). These results were in parallel to
those catalyzed by Pd-Buchwald ligand,18 but different
from those catalyzed by Pd-Josiphos.7
Cl
NHPh
Pd(OAc)2, L1
+
PhNH2
PhB(OH)2, K3PO4, BuOH
2a
OTs
OTs
(7) Ogata, T.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130,
13848.
(8) Xie, X.; Zhang, T. Y.; Zhang, Z. J. Org. Chem. 2006, 71,
6522.
1l
3la 88%
Scheme 1 The coupling reaction of 4-chlorophenyl tosylate with
aniline
(9) Belfield, A. J.; Brown, G. R.; Foubister, A. J. Tetrahedron
1999, 55, 11399.
(10) Buchwald, S. L.; Mauger, C.; Mignani, G.; Scholz, U. Adv.
Synth. Catal. 2006, 348, 23.
In summary, the bulky and electron-rich MOP-type ligand
was efficient for the Pd-catalyzed amination of aryl tosy-
lates. The active catalyst was formed in situ from
Pd(OAc)2, PhB(OH)2, and air- and moisture-stable phos-
phines. The optimized system showed high catalytic ac-
tivity for monoarylation of aryl amines, indoles, and
hydrazones. In the competitive reaction, the reaction rates
of aryl chlorides are faster than those of aryl tosylates.
(11) (a) Law, K. Y. Chem. Rev. 1993, 93, 449. (b) Ferreira, I. C.
F. R.; Queiroz, M.-J. R. P.; Kirsch, G. Tetrahedron 2003, 59,
975. (c) Watanabe, M.; Nishiyama, M.; Yamamoto, T.;
Koie, Y. Tetrahedron Lett. 2000, 41, 481.
(12) Roy, A. H.; Hartwig, J. F. Organometallics 2004, 23, 194.
(13) (a) Macé, Y.; Kapdi, A. R.; Fairlamb, I. J. S.; Jutand, A.
Organometallics 2006, 25, 1795. (b) Fairlamb, I. J. S.;
Kapdi, A. R.; Lee, A. F.; McGlackem, G. P.; Weissburger,
F.; de Vries, A. H. M.; Van de Vondervoort, L. S. Chem.
Eur. J. 2006, 12, 8750. (c) Dooleweerdt, K.; Fors, B. P.;
Buchwald, S. L. Org. Lett. 2010, 12, 2350.
Supporting Information for this article is available online at
(14) Typical Procedure
A flame-dried Schlenk tube was charged with Pd(OAc)2 (4.5
mg, 0.02 mmol), L1 (13.7 mg, 0.03 mmol), PhB(OH)2 (6.1
mg, 0.05 mmol), and n-BuOH (2 mL) under an atmosphere
of nitrogen. The solution was stirred at r.t. for 15 min then
K3PO4 (424.5 mg, 2.0 mmol) and ArOTs 1 (1mmol) were
added, followed by aryl amine 3 (1.2 mmol). The reaction
was heated to 110 °C and stirred for 15 h. The reaction
mixture was cooled to r.t. and diluted with Et2O (5 mL) and
H2O (3 mL). After separation of the layers, the aqueous
phase was extracted with Et2O (3 × 5 mL), and the combined
organic layers were dried over Na2SO4 and concentrated in
vacuo. Purification of the crude product by flash column
chromatography (silica gel; PE–Et3N, 99:1) yielded
compound 3.
Acknowledgment
We thank the National Natural Science Foundation of China for fi-
nancial support.
References and Notes
(1) (a) Schlummer, B.; Scholz, U. Adv. Synth. Catal. 2004, 346,
1599. (b) Hartwig, J. F. In Handbook of Organopalladium
Chemistry for Organopalladium Chemistry of Organic
Synthesis, Vol. 1; Wiley-Interscience: New York, 2002,
1051. (c) Muci, A.; Buchwald, S. L. Top. Curr. Chem. 2002,
219, 131.
Synlett 2011, No. 7, 955–958 © Thieme Stuttgart · New York