ACS Medicinal Chemistry Letters
Letter
(5) Tricoci, P.; et al. Thrombin-receptor antagonist vorapaxar in
acute coronary syndromes. N. Engl. J Med. 2012, 366, 20−33.
(6) Goto, S.; Ogawa, H.; Takeuchi, M.; Flather, M. D.; Bhatt, D. L.
Double-blind, placebo-controlled Phase II studies of the protease-
activated receptor 1 antagonist E5555 (atopaxar) in Japanese patients
with acute coronary syndrome or high-risk coronary artery disease.
Eur. Heart J. 2010, 31, 2601−2613.
(7) O'Donoghue, M. L.; et al. Safety and tolerability of atopaxar in
the treatment of patients with acute coronary syndromes: the lessons
from antagonizing the cellular effects of Thrombin-Acute Coronary
Syndromes Trial. Circulation 2011, 123, 1843−1853.
(8) Wiviott, S. D.; Flather, M. D.; O’Donoghue, M. L.; Goto, S.;
Fitzgerald, D. J.; Cura, F.; Aylward, P.; Guetta, V.; Dudek, D.; Contant,
C. F.; Angiolillo, D. J.; Bhatt, D. L. Randomized trial of atopaxar in the
treatment of patients with coronary artery disease: The lessons from
antagonizing the cellular effect of Thrombin-Coronary Artery Disease
Trial. Circulation 2011, 123, 1854−1863.
(9) Kato, Y.; Kita, Y.; Nishio, M.; Hirasawa, Y.; Ito, K.; Yamanaka, T.;
Motoyama, Y.; Seki, J. In vitro antiplatelet profile of FR171113, a
novel non-peptide thrombin receptor antagonist. Eur. J. Pharmacol.
1999, 384, 197−202.
(10) Andrade-Gordon, P.; Maryanoff, B. E.; Derian, C. K.; Zhang, H.
C.; Addo, M. F.; Darrow, A. L.; Eckardt, A. J.; Hoekstra, W. J.;
McComsey, D. F.; Oksenberg, D.; Reynolds, E. E.; Santulli, R. J.;
Scarborough, R. M.; Smith, C. E.; White, K. B. Design, synthesis, and
biological characterization of a peptide-mimetic antagonist for a
tethered-ligand receptor. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12257−
12262.
(11) Ahn, H.-S.; Boykow, G.; Burnett, D. A.; Caplen, M. A.;
Czarniecki, M.; Domalski, M. S.; Foster, C.; Manna, M.; Stamford, A.
W.; Wu, Y. Structure-activity relationships of pyrroloquinazolines as
thrombin receptor antagonists. Bioorg. Med. Chem. Lett. 1999, 9,
2073−2078.
such as 4 (ML161) may inhibit PAR1 in an allosteric fashion,
which could enable the selective modulation of platelet
activation pathways. Allosteric inhibition of PAR1 could
provide saturable receptor binding and selective modulation
of downstream G-protein signaling pathways. These pharmaco-
logical attributes may decrease the risk of life-threatening
hemorrhage in the setting of anti-PAR1 therapy.28 Analogues of
the 1,3-diaminobenzene scaffold will be important probes for
evaluating this hypothesis.
ASSOCIATED CONTENT
* Supporting Information
■
S
Additional assay results (Figures S1 to S3), assay protocols, and
synthetic procedures and characterization data for 4, 66, and
68. This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
■
Funding
This work was funded by the NIH-MLPCN program (1 U54
HG005032-1 awarded to S.L.S.) and P01-HL-87203 (R.F.), an
Established Investigator Award from the American Heart
Association (R.F.), and R03 MH-84076-01 (R.F.).
Notes
The authors declare no competing financial interest.
(12) Nantermet, P. G.; Barrow, J. C.; Lundell, G. F.; Pellicore, J. M.;
Rittle, K. E.; Young, M.; Freidinger, R. M.; Connolly, T. M.; Condra,
C.; Karczewski, J.; Bednar, R. A.; Gaul, S. L.; Gould, R. J.; Prendergast,
K.; Selnick, H. G. Discovery of a nonpeptidic small molecule
antagonist of the human platelet thrombin receptor (PAR-1). Bioorg.
Med. Chem. Lett. 2002, 12, 319−323.
ACKNOWLEDGMENTS
■
We thank Stephen Johnston, Chris Johnson, and Mike
Lewandowski of the Broad Institute for analytical chemistry
support, Benito Munoz for reviewing the manuscript, and
Robert Gould for helpful discussions.
(13) Perez, M.; et al. Discovery of novel protease activated receptors
1 antagonists with potent antithrombotic activity in vivo. J. Med. Chem.
2009, 52, 5826−5836.
ABBREVIATIONS
■
(14) VerPlank, L.; Dockendorff, C.; Negri, J.; Perez, J. R.; Dilks, J.;
MacPherson, L.; Palmer, M.; Flaumenhaft, R.; Schreiber, S. L. Probe
reports from the NIH Molecular Libraries Program. Chemical Genetic
(15) Flaumenhaft, R.; Sim, D. S. The platelet as a model for chemical
genetics. Chem. Biol. 2003, 10, 481−486.
(16) Flaumenhaft, R.; Dilks, J. R. Discovery-based strategies for
studying platelet function. Mini Rev. Med Chem. 2008, 8, 350−357.
(17) Briefly, compounds were incubated in platelet-rich plasma in
384-well plates at a concentration of 7.5 μM (for the primary screen)
or at a dose response (for confirmation assays) for 30 min. Next, a
mixture of the CellTiter-Glo (Promega) reagent (for ATP detection
with a luciferase/luciferin system) and SFLLRN (EC50 for platelet
activation ∼5 μM) was used. Each plate was incubated for 15 min at
22 °C, and then, luminescence resulting from ATP-driven oxyluciferin
production was measured by a plate reader. See ref 13 for full details.
(18) Sim, D. S.; Merrill-Skoloff, G.; Furie, B. C.; Furie, B.;
Flaumenhaft, R. Initial accumulation of platelets during arterial
thrombus formation in vivo is inhibited by elevation of basal cAMP
levels. Blood 2004, 103, 2127−2134.
ATP, adenosine triphosphate; HTS, high-throughput screening;
IC50, concentration of inhibitor giving half-maximal activity;
NIH, National Institute of Health; MLPCN, Molecular
Libraries Probe Center Network; NIH-MLSMR, National
Institute of Health Molecular Libraries Small Molecule
Repository; PAR1, protease-activated receptor 1; PPB, plasma
protein binding; PBS, phosphate-buffered saline; PS, plasma
stability; SAR, structure−activity relationship
REFERENCES
■
(1) For a review, see, for example: Michelson, A. D. Antiplatelet
therapies for the treatment of cardiovascular disease. Nature Rev. Drug
Discovery 2010, 9, 154−169.
(2) See, for example: Antithrombotic Trialists' Collaboration.
Collaborative meta-analysis of randomised trials of antiplatelet therapy
for prevention of death, myocardial infarction, and stroke in high risk
patients. Br. Med. J. 2002, 324, 71−86.
(3) See, for example: Wiviott, S. D.; et al. Prasugrel versus clopidogrel
in patients with acute coronary syndromes. N. Engl. J. Med. 2007, 357,
2001−2015.
(19) For analysis of P-selectin expression, 20 μL of gel-filtered
platelets (0.5-1 × 108/mL) were incubated with the indicated
antagonists and subsequently stimulated with 5 μM SFLLRN (EC50
for platelet activation ∼5 μM) for 10 min. Following stimulation, 10
μL of reaction mixture was transferred to 5 μL of PE-conjugated
AC1.2 anti-P-selectin antibody. Phosphate-buffered saline (PBS; 500
(4) Discovery of SCH 530348: Chackalamannil, S.; Wang, Y.;
Greenlee, W. J.; Hu, Z.; Xia, Y.; Ahn, H.-S.; Boykow, G.; Hsieh, Y.;
Palamanda, J.; Agans-Fantuzzi, J.; Kurowski, S.; Graziano, M.;
Chintala, M. Discovery of a novel, orally active himbacine-based
thrombin receptor antagonist (SCH 530348) with potent antiplatelet
activity. J. Med. Chem. 2008, 51, 3061−3064.
236
dx.doi.org/10.1021/ml2002696 | ACS Med. Chem. Lett. 2012, 3, 232−237