2204
N. L. Subasinghe et al. / Bioorg. Med. Chem. Lett. 16 (2006) 2200–2204
Table 3. Protease selectivity for compound 28
11. Gaboriaud, C.; Rossi, V.; Bally, I.; Arlaud, G. J.;
Fontecilla-Camps, J. C. EMBO J. 2000, 19, 1755.
12. In our earlier study,10 we described the structural basis for
the development of our binding model for the thiophene
amidines. Here we extend that model to the arylsulfone
series. We note that the caveats described previously,10
due to the limited structural information available regard-
ing the enzyme conformation in the inhibitor-bound state,
also apply to the present work.
13. Guanti, G.; Dell’Erba, C.; Spinelli, D. J. Heterocycl.
Chem. 1970, 7, 1333.
14. (a) Garigipati, R. S. Tetrahedron Lett. 1990, 31, 1969; (b)
Sidler, D. R.; Lovelace, T. C.; McNamara, J. M.; Reider,
P. J. J. Org. Chem. 1994, 59, 1231.
uPA
tPA
FXa
11.4
Thrombin
>15a
Plasmin
>13a
Trypsin
1.4
Ki (lM)
>10a
>10a
a No inhibition observed at this screening concentration.
group of the arylmethyl substituents does not provide
useful SAR information, the diminished activity of com-
pounds 21 and 22 suggests that substituents on the
methylene group can prevent the benzyl residue from
achieving a conformation that favors a positive interac-
tion with the hydrophobic binding pocket. The observed
loss of activity when the bromine was substituted with
hydrogen or chlorine (cf. 20–32 and 26–35) suggests that
this residue is contributing to affinity through intermo-
lecular hydrophobic contacts.
15. Illig, C. R.; Subasinghe, N. L.; Hoffman, J. B.; Wilson, K.
J.; Rudolph, M. J.; Marugan, J. J. U.S. Patent 6291514,
2001; Chem. Abstr. 2001, 135, 242131.
16. Ramsay, G. C. et al. J. Am. Chem. Soc. 1971, 93,
1166European Patent EP 983982.
17. Field, L.; Clark, R. D. In Organic Synthesis Collective;
Wiley: New York, 1963; Vol. IV, pp 674–677.
18. Hazelton, C. J. et al. Tetrahedron 1995, 51, 5597.
19. Mrozik, H. H. U.S. Patent 4005199, 1977.
20. Lam, P. Y. S.; Vincent, G.; Clark, C. G.; Deudon, D.;
Jadhav, P. K. Tetrahedron Lett. 2001, 42, 3415.
In conclusion, lead optimization studies around the aryl-
sulfonylthiophene-2-carboxamidine template has result-
ed in a series of N-benzylbenzimidazoles with good C1s
inhibitory potency and >1000-fold selectivity over uPA
(Table 3). Compound 28 also has good selectivity over
tPA, FXa, thrombin, and plasmin.21
21. Dissociation constants were determined at 37 °C in a 96-
well format using a Molecular Devices plate reader.
Varied concentrations of inhibitors in 10 lL dimethyl
sulfoxide were added to wells with 280 lL of assay buffer
(pH 7.5) which contained 50 mM HEPES, 0.2 M NaCl,
1% dimethyl sulfoxide, 0.05% n-octyl b-D-glucopyrano-
side, and substrate, and incubated for 15 min at 37 °C.
Reactions were initiated by the addition of 10 lL of
enzyme in assay buffer without dimethyl sulfoxide and
substrate, and the change in absorbance at 405 nm was
monitored for 15 min. IC50s were obtained from the
inverse slope of plots of the ratio of initial velocity in the
absence of inhibitor to initial velocity in the presence of
inhibitor as a function of inhibitor concentration. All
velocities were corrected for background substrate con-
version (no enzyme addition). The dissociation constant
(Ki) was calculated using the equation Ki = IC50/(1 + S/
Km) where S is the substrate concentration (Cheng, Y.;
Prusoff, W. H. Biochem Pharmacol. 1973, 22, 3099). Km
values for each enzyme–substrate pair were determined
from Hanes–Wolf plots using the same final buffer
conditions as Ki determinations. Respective substrate,
substrate concentration, and Km values for each enzyme
were: human C1s: benzyloxycarbonyl-Gly-Arg-S-benzyl,
45 lM in 200 lM DTNB (5,50-dithio-bis-[2-nitrobenzoic
acid]); 190 lM; human a-thrombin:succinyl-Ala-Ala-Pro-
Arg-p-nitroanilide, 100, 320 lM; human factor Xa:
References and notes
1. (a) Walport, M. J. N. Engl. J. Med. 2001, 344, 1058; (b)
Walport, M. J. N. Engl. J. Med. 2001, 344, 1140.
2. (a) Kirschfink, M. Immunol. Rev. 2001, 180, 177; (b)
Caliezi, C.; Wuillemin, W. A.; Zeerleder, S.; Redondo, M.;
Eisele, B.; Hack, C. E. Pharmacol. Rev. 2000, 52, 91.
3. Pascual, M. A.; Crespo, M.; Tolkoff-Rubin, N. Nefrologia
2001, 21, 327.
4. D’Ambrosio, A. L.; Pinsky, D. J.; Connolly, E. S. Mol.
Med. 2001, 7, 367.
5. Carugati, A.; Pappalardo, E.; Zingale, L. C.; Cicardi, M.
Mol. Immunol. 2001, 38, 161.
6. Lissoni, P.; Barni, S.; Cattaneo, G.; Archili, C.; Crispino,
S.; Tancini, G.; D’Angelo, L.; Magni, S.; Fiorelli, G. Int.
J. Biol. Markers 1990, 5, 195.
7. Langlois, P. F.; Gawryl, M. S. Clin. Immunol. Immunopa-
thol. 1988, 47, 152.
8. Cooper, N. R. Adv. Immunol. 1985, 37, 151; Arlaud, G. J.;
Gaboriaud, C.; Thielens, N. M.; Rossi, V. Biochem. Soc.
Trans. 2002, 30, 1001; Arlaud, G. J.; Gaboriaud, C.;
Thielens, N. M.; Budayova-Spano, M.; Rossi, V.; Fonte-
cilla-Camps, J. C. Mol. Immunol. 2002, 39, 383; Gal, P.;
Ambrus, G.; Zavodszky, P. Immunobiology 2002, 205, 383.
9. Buerke, M.; Schwertz, H.; Seitz, W.; Meyer, J.; Darius, H.
J. Immunol. 2001, 167, 5375.
10. Subasinghe, N. L.; Ali, F.; Illig, C. R.; Jonathan Rudolph,
M.; Klein, S.; Khalil, E.; Soll, R. M.; Bone, R. F.;
Spurlino, J. C.; DesJarlais, R. L.; Crysler, C. S.; Cum-
mings, M. D.; Morris, P. E., Jr.; Kilpatrick, J. M.;
Sudhakara Babu, Y. Bioorg. Med. Chem. Lett. 2004, 14,
3043.
benzyloxycarbonyl-D-Arg-Gly-Arg-p-nitroanilide,
100,
260 lM; human urokinase: pyro-Glu-Gly-Arg-p-nitroani-
lide, 86, 87 lM; human plasmin: H-D-Val-Leu-Lys-p-
nitroanilide, 150, 300 lM; human trypsin: benzyloxycar-
bonyl-D-Arg-Gly-Arg-p-nitroanilide, 60, 61 lM; human
tPA (2-chain): methlysulfonyl-D-cyclohexyl-Try-Gly-Arg-
p-nitroanilide, 200, 200 lM. Within-run assay coefficient
of variation (CV) was <10%; between-run CV was <20%.
22. Perona, J. J.; Craik, C. S. J. Biol. Chem. 1997, 272, 29987.