THERMOCHEMICAL STUDY OF QUINOXALINE-N-OXIDES
value can be used with enhanced confidence because the DH1
(N–O) calculated for 2,3-dimethylquinoxaline-N,N′-dioxide using
the same density functional theory approach and basis sets
was ~252 kJꢃmol–1.[40] The 260.9 ꢂ 2.7 kJꢃmol–1 value was also
found to be valid for the DH1(N–O) values calculated for 3.5
and also for 3-benzyl-2-methyl-quinoxaline 1,4-di-N-oxide.[40]
Therefore, the DH1(N–O) for compound 3.2 is probably not
accurate and must be used with caution. In the cases of com-
pounds 3.1 and 3.3, the DH1(N–O) values seem to be accurate
even though they are associated with large uncertainties. Why
is that so? On one hand, the DH1(N–O) values derived for these
compounds, respectively, 242.4 ꢂ 9.0 kJꢃmol–1 and 255.6 ꢂ 7.4
kJꢃmol–1, are lower than the 260.9 ꢂ 2.7 kJꢃmol–1 value intro-
duced above and, on the other hand, these values are in quite
good agreement with either the experimentally derived DH1
(N–O) results for 3.4 and 3.5 (DH1(N–O) = ~253 kJꢃmol–1, c.f.
Table 6) and the B3LYP/6-311 + G(2 d,2p)//B3LYP/6-31 G(d) calcu-
lated data for 3.1 and 3.3 (DH1(N–O) = ~242–245 kJꢃmol–1).[11–13]
SUPPLEMENTARY MATERIAL
Analytical and structural data on compounds 4.1, 4.2 and 4.3
(melting points, elemental analyses, MS/NMR data and spectra).
REFERENCES
[1] B. Ganley, G. Chwdhury, J. Bhansali, J. S. Daniels, K. S. Gates, Bioorg.
Med. Chem. 2001, 9, 2395.
[2] K. M. Amin, M. M. F. Ismail, E. Noaman, D. H. Soliman, Y. A. Ammar,
Bioorg. Med. Chem. 2006, 14, 6917.
[3] M. A. Ortega, M. J. Morancho, F. J. Martinez-Crespo, Y. Sainz, M. E.
Montoya, A. Ceráin, A. Monge, Eur. J. Med. Chem. 2000, 35, 21.
[4] B. Zarranz, A. Jaso, I. Aldana, A. Monge, Bioorg. Med. Chem. 2004,
12, 3711.
[5] A. Jaso, B. Zarranz, I. Aldana, A. Monge, J. Med. Chem. 2005, 48, 2019.
[6] A. Carta, M. Loriga, G. Paglietti, A. Mattana, P. L. Fiori, P. Mollicotti,
L. Sechi, S. Zanetti, Eur. J. Med. Chem. 2004, 39, 195.
[7] M. Bioani, H. Cerecelto, M. Gonçalez, M. Risso, C. Olea-Azar, O. E. Piro,
A. L. Ceráin, O. Ezpleta, A. Monge-Veja, Eur J. Med. Chem. 2001,
36, 771.
[8] H. Nagasawa, M. Yamashita, N. Mikamo, M. Shimamura, S. Oka,
Y. Uto, H. Hori, Biochem. Phys., Part A 2002, 132, 30.
CONCLUSIONS
[9] W. E. Acree Jr., G. Pilcher, M. D. M. C. Ribeiro da Silva, J. Phys. Chem.
Ref. Data 2005, 34, 553, and references cited therein.
[10] J. R. B. Gomes, M. A. A. Vieira, D. M. Stovall, W. E. Acree Jr.,
M. D. M. C. Ribeiro da Silva, Bull. Chem. Soc. Japan 2007, 80, 1770.
[11] J. R. B. Gomes, E. A. Sousa, P. Gomes, N. Vale, J. M. Gonçalves,
S. Pandey, W. E. Acree Jr., M. D. M. C. Ribeiro da Silva, J. Phys. Chem.
B 2007, 111, 2075.
[12] J. R. B. Gomes, E. A. Sousa, J. M. Gonçalves, L. Gales, A. M. Damas,
P. Gomes, S. Pandey, W. E. Acree Jr., M. D. M. C. Ribeiro da Silva,
J. Phys. Org. Chem. 2007, 20, 491.
[13] J. R. B. Gomes, A. R. Monteiro, B. B. Campos, P. Gomes,
M. D. M. C. Ribeiro da Silva, J. Phys. Org. Chem. 2009, 22, 17.
[14] M. D. M. C. Ribeiro da Silva, M. A. A. Vieira, C. Givens, S. Keown,
W. E. Acree Jr., Thermochim. Acta 2006, 450, 67.
[15] M. D. M. C. Ribeiro da Silva, J. I. T. A. Cabral, C. Givens, S. Keown,
W. E. Acree Jr., J. Therm. Anal. Calorim. 2008, 92, 73.
[16] J. R. B. Gomes, E. A. Sousa, J. M. Gonçalves, M. J. S. Monte, P. Gomes,
S. Pandey, W. E. Acree Jr., M. D. M. C. Ribeiro da Silva, J. Phys. Chem. B
2005, 109, 16188.
[17] J. R. B. Gomes, M. D. M. C. Ribeiro da Silva, M. A. V. Ribeiro da Silva.
Chem. Phys. Lett. 2006, 429, 18.
[18] J. I. T. A. Cabral, R. A. R. Monteiro, M. A. A. Rocha, L. M. N. B. F. Santos,
W. E. Acree Jr., M. D. M. C. Ribeiro da Silva, J. Therm. Anal. Calorim.
2010, 100, 431.
[19] W. E. Acree Jr., J. R. Powell, S. A. Tucker, M. D. M. C. Ribeiro da Silva,
M. A. R. Matos, J. M. Gonçalves, L. M. N. B. F. Santos, V. M. F. Morais,
G. Pilcher, J. Org. Chem. 1997, 62, 3722.
Experimental thermochemical work involving static bomb
calorimetry and Calvet microcalorimetry has been performed
for three quinoxaline derivatives containing a single dative
N!O bond, namely 2-tert-butoxycarbonyl-3-methylquinoxa-
line-N-oxide, 2-phenylcarbamoyl-3-methylquinoxaline-N-oxide,
and 2-carbamoyl-3-methylquinoxaline-N-oxide. The two calori-
metric techniques were used to measure their energies of
combustion and the enthalpies of sublimation from which their
standard molar enthalpies of combustion and of formation
(crystalline and gaseous states) were derived at T = 298.15 K.
The gas phase standard molar enthalpies of formation for
the mono-N-oxides were combined with existing literature
values for the corresponding di-N-oxides and for atomic
oxygen allowing the determination of the first standard molar
enthalpies of dissociation of the N!O bond next to an electron-
withdrawing group in the quinoxaline di-N-oxides. The values
obtained for 2-tert-butoxycarbonyl-3-methylquinoxaline-N-
oxide and 2-carbamoyl-3-methylquinoxaline-N-oxide were
242.4 ꢂ 9.0 kJꢃmol–1 and 255.6 ꢂ 7.4 kJꢃmol–1, respectively. These
results are in good agreement with the same quantities calcu-
lated using a hybrid density functional theory approach and
are also in agreement with the experimental values reported
for 3-methoxycarbonyl-2-methylquinoxaline-N,N′-dioxide and
3-ethoxycarbonyl-2-methylquinoxaline-N,N′-dioxide compounds,
the only two experimental DH1(N–O) values existing in the litera-
ture for quinoxaline derivatives. In the case of the third N-oxide
compound studied here, 2-phenylcarbamoyl-3-methylquinoxaline-
N-oxide, the derived DH1(N–O) was 282 ꢂ 14 kJꢃmol–1, which is
too high compared with the values determined for the other
quinoxaline-N-oxides studied so far and is above the upper limit
for the DH1(N–O) estimated for 2-X-3-methylquinoxaline-N,
N′-dioxide based on previous experimental work performed for
2,3-dimethylquinoxaline-N,N′-dioxide, that is, 260.9 ꢂ 2.7 kJꢃmol–1.
[20] M. D. M. C. Ribeiro da Silva, J. R. B. Gomes, J. M. Gonçalves,
E. A. Sousa, S. Pandey, W. E. Acree Jr., Org. Biomol. Chem. 2004, 2, 2507.
[21] R. L. Robertson, R. V. Kasubick, US Patent Office 1973; patent nr. 3,
767, 657 (patented October, 23).
[22] J. P. Dirlam, J. W. McFarland, J. Org. Chem. 1977, 42, 1360–1364.
[23] M. E. Wieser, M. Berglund, Pure Appl. Chem. 2009, 81, 2131.
[24] H. A. Gundry, D. Harrop, A. J. Head, G. B. Lewis, J. Chem. Thermodyn.
1969, 1, 321.
[25] J. Bickerton, G. Pilcher, G. Al-Takhin, J. Chem. Thermodyn. 1984, 16,
373.
[26] M. D. M. C. Ribeiro da Silva, L. M. N. B. F. Santos, A. L. R. Silva,
O. Fernandes, W. E. Acree Jr., J. Chem. Thermodyn. 2003, 35, 1093.
[27] J. Coops, R. S. Jessup, K. Van Nes, Calibration for reactions in a bomb
at constant volume. In Experimental Thermochemistry (Ed. F. D.
Rossini), Interscience, New York, 1956, Vol. 1, Chapter 3, pp 27–58.
[28] D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S.
M. Bailey, K. L. Churney, R. Nutall, J. Phys. Chem. Ref. Data 1982,
II(Suppl. 2), 2–65.
[29] E. W. Washburn, J. Res. Nat. Bur. Stand. (US) 1933, 10, 525.
[30] W. N. Hubbard, D. W. Scott, G. Waddington, Standard States and
Corrections for Combustions in a Bomb at Constant Volume. In
Experimental Thermochemistry (Ed. F. D. Rossini), Interscience,
New York, 1956, Vol. 1, Chapter 5, pp 75–127.
Acknowledgements
Thanks are due to Fundação para a Ciência e Tecnologia (FCT),
Lisbon, Portugal, for financial support to Centro de Investigação
em Química - UP and CICECO. V. L. S. Freitas thanks the FCT
and European Social Fund for the award of a Ph. D. Research
Grant SFRH/BD/41672/2007.
J. Phys. Org. Chem. 2012, 25 420–426
Copyright © 2011 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/poc