10.1002/anie.201915161
Angewandte Chemie International Edition
COMMUNICATION
[1]
[2]
a) M. D. Kärkäs, J. A. Porco Jr., C. R. J. Stephenson, Chem. Rev. 2016,
116, 9683-9747; b) T. P. Nicholls, D. Leonori, A. C. Bissember Nat.
Prod. Rep. 2016, 33, 1248-1254; c) N. A. Romero, D. A. Nicewicz,
Chem. Rev. 2016, 116, 10075-10166; d) L. Marzo, S. K. Pagire, O.
Reiser, B. König, Angew. Chem. Int. Ed. 2018, 57, 10034-10072;
Angew. Chem. 2018, 130, 10188-10228.
We next studied different substitution patterns of fluorinated
alcohols.
Perfluorinated
alcohols
and
substituted
trifluoromethylated alcohols underwent the photoinduced proton
transfer reaction in good to high yield (Scheme 3, 17a-q).
Importantly, even a sterically highly demanding tertiary alcohol
smoothly reacted to the desired fluorinated ether 17c. Similarly,
the bis(monofluoromethyl)-substituted alcohol reacted in good
yield to give ether 17k. It is noteworthy that the trifluoromethyl
group can also be moved to the terminal position and 3,3,3-
trifluoro-propan-1-ol reacted in moderate yield to the desired
reaction product 17h. When studying diols, the product of both
mono- and difunctionalization could be obtained in moderate to
good yield, depending on the reaction stoichiometry (Scheme 3,
17l-o). The efficiency of this proton transfer is also underlined in
the reaction of one example of a tertiary fluorinated alcohol that
gave the desired ether 17c in good yield.
This reaction can further be performed using chlorinated and
brominated alcohols and the corresponding ethers were isolated
in moderate to good yield (Scheme 3, 18a-c). Phenol readily
reacted in this transformation, yet giving a complex mixture of O-
H and C-H functionalization products. When blocking ortho
and/or para position of the aromatic ring by substituents, the
desired O-H functionalization product of phenol was obtained in
moderate to high isolated yield (Scheme 3, 19a-d).
a) P. Wan, D. Shukla, Chem. Rev. 1993, 93, 571-584; b) A. C.
Sedgwick, L. Wu, H.-H. Han, S. D. Bull, X.-P. He, T. D. James, J. L.
Sessler, B. Z. Tang, H. Tian, J. Song, Chem. Soc. Rev. 2018, 47, 8842-
8880.
[3]
[4]
J. R. Hunt, C. Tseng, J. M. Dawlaty, Faraday Discuss. 2019, 216, 252-
268.
a) E. W. Driscoll, J. R. Hunt, J. M Dawlaty, J. Phys. Chem. Lett. 2016, 7,
2093-2099; b) J. R. Hunt, J. M. Dawlaty, J. Phys. Chem. A 2018, 122,
7931-7940; c) I. Demianets, J. R. Hunt, J. M Dawlaty, T. J. Williams,
Organometallics 2019, 38, 200-204; d) W. Sheng, M. Nairat, P. D.
Pawlaczyk, E. Morczka, B. Farris, E. Pines, J. H. Geiger, B. Borhan, M.
Dantus, Angew. Chem. Int. Ed. 2018, 57, 14742-14746; Angew. Chem.
2018, 130, 14958-14962;
[5]
D. Rimmerman, D. Leshchev, D. J. Hsu, J. Hong, B. Abraham, R.
Henning, I. Kosheleva, L. X. Chen, J. Phys. Chem. B 2019, 123, 2016-
2021; b). N. Amdursky, Phys. Chem. Chem. Phys. 2015, 17, 32023-
32032; c) B. Cohen, C. Alvarez Martin, N. Alarcos Carmona, J. A.
Organero, A. Douhal, J. Phys. Chem. B. 2011, 115, 7637.
R. M. D. Nunes, M. Pineiro, L. G. Arnault, J. Am. Chem. Soc. 2009, 131,
9456-9462.
[6]
[7]
Y. Li, X. Feng, A. Wang, Y. Yang, J. Fei, B. Sun, Y. Jia, J. Li, Angew.
Chem. Int. Ed. 2019, 58, 796-800; Angew. Chem. 2019, 131, 806-810.
A. Das, S. Ayad, K. Hanson, Org. Lett. 2016, 18, 5416-5419.
Z. M. Salem, J. Saway, J. J. Badilo, Org. Lett. 2019, 21, 8528-8532.
In summary, we herein report on photoinduced proton transfer
[8]
[9]
reactions that open up
a
new reactivity window of
aryldiazoacetates. They undergo the formation of an unreactive
hydrogen bonded complex with mildly acidic fluorinated alcohols
via the ester functional group. Photoexcitation of this complex
leads to a concomitant photoinduced proton transfer reaction,
followed by nucleophilic substitution to give the ether product.
This hydrogen bond was identified by NMR spectroscopy and
further control experiments underpin the importance of this
hydrogen bond for high reaction efficiency and a carbene
transfer mechanism is unlikely. We studied the generality and
applicability of this approach in the reaction with diverse
fluorinated and other halogenated alcohols and could obtain the
desired reaction products in high yields (54 examples, up to 98%
yield).
[10] a) S.-F. Zhu, Y. Cai, H.-X. Mao, J.-H. Xie, Q.-L. Zhou, Nature Chem.
2010, 2, 546-551; b) Y. Zhang, Y. Yao, L. He, Y. Liu, L. Shi, Adv. Synth.
Catal. 2017, 359, 2754-2761; c) X.-L. Xie, S.-F. Zhu, J.-X. Guo, Y. Cai,
Q.-L. Zhou, Angew. Chem. Int. Ed. 2014, 53, 2978-2981; Angew. Chem.
2014, 126, 3022-3025.
[11] I. Jurberg, H. M. L. Davies, Chem. Sci. 2018, 9, 5112-5118.
[12] S. K. Sinha, T. Bhattacharya, D. Maiti, React. Chem. Eng. 2019, 4, 244-
253.
[13] Selected examples: a) X. Creary, C. C. Geiger, J. Am. Chem. Soc.
1982, 104, 4151-4162; b) D. Bonnet-Delpon, C. Cambillau, M.
Charpentier-Morize, R. Jacquot, D. Mesurer, M. Ourevitch, J. Org.
Chem. 1988, 53, 754-759; c) A. Di Salvo, M. David, B. Crousse, D.
Bonnet-Delpon, Adv. Synth. Catal. 2006, 348, 118-124.
[14] Y. Imada, J. L. Röckl, A. Wiebe, T. Gieshoff, D. Schollmeyer, J. Chiba,
R. Franke, S. Waldvogel, Angew. Chem. Int. Ed. 2018, 57, 12136-
12140; Angew. Chem. 2018, 130, 12312-12317.
[15] Selected review articles: a) L. W. Ciszewski, K. Rybicka-Jasińska, D.
Gryko, Org. Biomol. Chem. 2019, 17, 432-448; b) C. Empel, R. M.
Koenigs, Synlett 2019, 30, 1929-1934.
Acknowledgements
The authors thank the German Science Foundation, Dean’s
Seed Fund of RWTH Aachen and the Boehringer Ingelheim
Foundation for financial support. The authors thank Dr. T. Vinh
Nguyen (UNSW Sydney), Prof. Frederic W. Patureau (RWTH
Aachen), and Prof. Markus Albrecht (RWTH Aachen) for helpful
discussions.
[16] E. E. Gray, M. K. Nielsen, K. A. Choquette, J. A. Kalow, T. J. A.
Graham, A. G. Doyle, J. Am. Chem. Soc. 2016, 138, 10802-10805.
[17] a) C. Pecile, A. Föffani, S. Gherseti, Tetrahedron 1984, 20, 823-829; b)
R. Cataliotti, S. Sorriso, G. Paliani, Can. J. Chem. 1974, 54, 2445-2450;
c) J. F. McGravity, Helv. Chim. Acta 1980, 63, 1767-1778.
[18] N. Fei, B. Sauter, D. Gillingham, Chem. Commun. 2016, 52, 7501-7504.
[19] For details, please see the supporting information.
Keywords: photochemistry • photobase • fluorine • diazoalkane
• O-H functionalization
This article is protected by copyright. All rights reserved.