One-Pot Transformation of Carboxylic Acids into Nitriles
111.8, 112.0, 118.4, 122.6, 124.5, 125.5, 127.3, 128.4,
C. W. Rees), Pergamon, Oxford, UK, 1995; c) S.-I. Murahashi,
Synthesis from Nitriles with Retention of the Cyano Group, in:
Science of Synthesis vol. 19, Thieme, 2004, p. 345–402; d) S. J.
Collier, P. Langer, Applications of Nitriles as Reagents for Or-
ganic Synthesis with Loss of the Nitrile Functionality, in: Science
of Synthesis vol. 19, Thieme, 2004, p. 403–425.
δ
=
155.6 ppm.
Benzothiophene-2-carbonitrile: Yield 197 mg (62%). Oil; (comm.
avail., m.p. 24–28 °C). IR (neat): ν = 2215 cm–1. 1H NMR
˜
(500 MHz, CDCl3): δ = 7.47 (t, J = 7.5 Hz, 1 H): δ = 7.53 (t, J =
7.5 Hz, 1 H), 7.84–7.58 (m, 3 H) ppm. 13C NMR (125 MHz,
CDCl3): δ = 109.6, 114.4, 122.4, 125.2, 125.7, 127.8, 135.0, 137.4,
141.3 ppm.
[2]
a) P. Wipf, Chem. Rev. 1995, 95, 2115–2134; b) P. Wipf, F.
Yokokawa, Tetrahedron Lett. 1998, 39, 2223–2226; c) P. C. Du-
cept, S. P. Marsden, Synlett 2000, 692–694; d) M. Chihiro, H.
Nagamoto, I. Takemura, K. Kitano, H. Komatsu, K. Sekigu-
chi, F. Tabusa, T. Mori, M. Tominaga, Y. Yabuuchi, J. Med.
Chem. 1995, 38, 353–358; e) X.-H. Gu, X.-Z. Wan, B. Jiang,
Bioorg. Med. Chem. Lett. 1999, 9, 569–572; f) P. K. Kadaba,
Synthesis 1973, 71–84; g) G. D. Diana, D. Cutcliffe, D. L. Volk-
ots, J. P. Mallamo, T. R. Bailey, N. Vescio, R. C. Oglesby, T. J.
Nitz, J. Wetzel, V. Giranda, D. C. Pevear, F. J. Dutko, J. Med.
Chem. 1993, 36, 3240–3250; h) S. J. Wittenberger, B. G.
Donner, J. Org. Chem. 1993, 58, 4139–4141; i) J.-J. Shie, J.-M.
Fang, J. Org. Chem. 2003, 68, 1158–1160; j) J. B. Medwid, R.
Paul, J. S. Baker, J. A. Brockman, M. T. Du, W. A. Hallett,
J. W. Hanifin, R. A. Hardy Jr., M. E. Tarrant, L. W. Torley, S.
Wrenn, J. Med. Chem. 1990, 33, 1230–1241; k) I. K. Khanna,
R. M. Weier, Y. Yu, X. D. Xu, F. J. Koszyk, P. W. Collins, C. M.
Koboldt, A. W. Veenhuizen, W. E. Perkins, J. J. Casler, J. L.
Masferrer, Y. Y. Zhang, S. A. Gregory, K. Seibert, P. C. Isak-
son, J. Med. Chem. 1997, 40, 1634–1647.
3-Phenylpropanenitrile: Yield 197 mg (75%). Colorless oil (comm.
avail.). IR (neat): ν = 2247 cm–1. 1H NMR (400 MHz, CDCl3): δ
˜
= 2.62 (t, J = 7.5 Hz, 2 H), 2.96 (t, J = 7.5 Hz, 2 H), 7.23 (d, J =
8.2 Hz, 2 H), 7.26 (t, J = 8.2 Hz, 1 H), 7.34 (t, J = 8.2 Hz, 2 H)
ppm. 13C NMR (100 MHz, CDCl3): δ = 19.3, 31.5, 119.1, 127.2,
128.2, 128.8, 138.0 ppm.
Hexadecanenitrile: Yield 351 mg (74%), m.p. 32–33 °C (comm.
avail., m.p. 27–33 °C). IR (neat): ν = 2247 cm–1. 1H NMR
˜
(400 MHz, CDCl3): δ = 0.88 (t, J = 6.8 Hz, 3 H), 1.24–1.34 (m, 22
H), 1.40–1.49 (m, 2 H), 1.57–1.70 (m, 2 H), 2.33 (t, J = 7.1 Hz, 2
H) ppm. 13C NMR (125 MHz, CDCl3): δ = 14.1, 17.1, 22.7, 25.3,
28.6, 28.7, 29.3, 29.3, 29.5, 29.6, 29.6 (4), 31.9, 119.8 ppm.
Octadecanenitrile (Stearonitrile): Yield 335 mg (63%), m.p. 43 °C
(comm. avail., m.p. 40 °C). IR (neat): ν = 2242 cm–1. 1H NMR
˜
(400 MHz, CDCl3): δ = 0.88 (t, J = 6.8 Hz, 3 H), 1.24–1.34 (m, 26
H), 1.39–1.49 (m, 2 H), 1.60–1.70 (m, 2 H), 2.33 (t, J = 7.1 Hz, 2
H) ppm. 13C NMR (100 MHz, CDCl3): δ = 14.1, 17.1, 22.7, 25.4,
28.7, 28.8, 29.3, 29.4, 29.5, 29.6, 29.7 (6), 31.9, 119.9 ppm.
[3]
[4]
R. C. Larock, Nitriles, Carboxylic Acids and Derivatives, in:
Comprehensive Organic Transformations, 2nd ed., Wiley-VCH,
New York, 1999, p. 1621–1996.
a) M. Heck, A. Wagner, C. Mioskowski, J. Org. Chem. 1996,
61, 6486–6487; b) N. Nakajima, M. Ubukata, Tetrahedron Lett.
1997, 38, 2099–2102; c) D. S. Bose, B. Jayalakshmi, J. Org.
Chem. 1999, 64, 1713–1714; d) R. T. Ruck, R. G. Bergman,
Angew. Chem. 2004, 116, 5489–5491; Angew. Chem. Int. Ed.
2004, 43, 5375–5377; e) C. Kuo, J. Zhu, J. Wu, C. Chu, C.
Yao, K. Shia, Chem. Commun. 2007, 301–303; f) S. Hanada,
Y. Motoyama, H. Nagashima, Eur. J. Org. Chem. 2008, 4097–
4100.
cis-9-Octadecenenitrile: Yield 385 mg (73%). Colorless oil (comm.
avail.). IR (neat): ν = 2242 cm–1. 1H NMR (400 MHz, CDCl3): δ
˜
= 0.88 (t, J = 6.8 Hz, 3 H): δ = 1.26–1.37 (m, 20 H), 1.63–1.69 (m,
2 H), 1.99–2.03 (m, 2 H), 2.33 (t, J = 7.1 Hz, 2 H), 5.31–5.39 (m,
2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 14.1, 17.1, 22.6, 25.3,
27.0, 27.2, 28.6, 28.6, 28.9, 29.3 (2), 29.5, 29.5, 29.7, 31.9, 119.8,
129.5, 130.1 ppm. HRMS (APPI): calcd. for C18H33N [M]+
263.2608; found 263.2604.
[5]
a) T. G. Clarke, N. A. Hampson, J. B. Lee, J. R. Morley, B.
Scanlon, Tetrahedron Lett. 1968, 9, 5685–5688; b) L. Vargha,
M. Remenyi, J. Chem. Soc. 1951, 1068–1069; c) J. Cason, in:
Org. Synth. Coll. Vol. 3, New York, 1955, p. 3–7; d) M. L.
Mihailovic, A. Stojiljkovic, V. Andrejevic, Tetrahedron Lett.
1965, 6, 461–464; e) A. Stojiljkovic, V. Andrejevic, M. L. Mi-
hailovic, Tetrahedron 1967, 23, 721–732; f) J. S. Below, C.
Garza, J. W. Mathieson, J. Chem. Soc. C 1970, 634–635; g) K.
Nakagawa, T. Tsuji, Chem. Pharm. Bull. 1963, 11, 296–301; h)
E. I. Troyanskii, I. V. Svitanko, V. A. Ioffe, G. I. Nikishin, Izv.
Akad. Nauk SSSR, Ser. Khim. 1982, 2180–2185; i) S. Yama-
zaki, Y. Yamazaki, Bull. Chem. Soc. Jpn. 1990, 63, 301–303; j)
D. Biondini, L. Brinchi, R. Germani, L. Goracci, G. Savelli,
Eur. J. Org. Chem. 2005, 3060–3063; k) E. Chen, Z. Peng, H.
Fu, J. Liu, L. Shao, J. Chem. Res. Synopses 1999, 726–727; l)
G. A. Lee, H. H. Freedman, Tetrahedron Lett. 1976, 17, 1641–
1644; m) S. Yamazaki, Synth. Commun. 1997, 27, 3559–3564;
n) B. Jursic, J. Chem. Res. Synop. 1988, 168–169; o) G. I. Niki-
shin, E. I. Troyanskii, V. A. Joffe, Izv. Akad. Nauk SSSR, Ser.
Khim. 1982, 2758–2762; p) T. Kametani, K. Takahashi, T. Ohs-
awa, M. Ihara, Synthesis 1977, 245–248; q) P. Capdevielle, A.
Lavigne, M. Maumy, Synthesis 1989, 453–454; r) P. Capdevi-
elle, A. Lavigne, D. Sparfel, J. Baranne-Lafont, K. C. Nguyen,
M. Maumy, Tetrahedron Lett. 1990, 31, 3305–3308; s) Y.
Maeda, T. Nishimura, S. Uemura, Bull. Chem. Soc. Jpn. 2003,
76, 2399–2403; t) R. Tang, S. E. Diamond, N. Neary, F. Mares,
J. Chem. Soc., Chem. Commun. 1978, 562–563; u) M. Schroder,
W. P. Griffith, J. Chem. Soc., Chem. Commun. 1979, 58–59; v)
A. J. Bailey, B. R. James, Chem. Commun. 1996, 2343–2344; w)
K. Mori, K. Yamaguchi, T. Mizugaki, K. Ebitani, K. Kaneda,
Chem. Commun. 2001, 461–462; x) K. Yamaguchi, N. Mizuno,
Angew. Chem. 2003, 115, 1518–1521; Angew. Chem. Int. Ed.
1-Cyanoadamantane: Yield 200 mg (62%), m.p. 191–194 °C (comm.
avail., m.p. 195 °C). IR (neat): ν = 2230 cm–1. 1H NMR (500 MHz,
˜
CDCl3): δ = 1.70–1.78 (m, 6 H) 2.00–2.08 (m, 9 H) ppm. 13C NMR
(100 MHz, CDCl3): δ = 27.0, 30.1, 35.7, 39.8, 125.3 ppm.
N-(tert-butoxycarbonyl)-L-proline: Yield 314 mg (80%). Colorless
oil. IR (neat): ν = 2248, 1696 cm–1. 1H NMR (400 MHz, [D6]-
˜
DMSO): δ = 1.42 (s, 9 H), 1.82–1.99 (m, 2 H), 2.08–2.28 (m, 3 H),
3.24 (q, J = 8.3 Hz, 1 H), 4.59–4.65 (m, 1 H) ppm. 13C NMR
(100 MHz, CDCl3): δ = 23.7, 24.5, 28.2, 30.7, 30.8, 31.5, 45.6, 45.9,
46.9, 47.0, 80.8, 81.2, 119.0, 152.9, 153.5 ppm. HRMS (ESI): calcd.
for C10H17N2O2 [M + H]+ 197.1285; found 197.1284.
Supporting Information (see footnote on the first page of this arti-
cle): Copies of the 1H and 13C NMR spectra of all the nitriles
prepared.
Acknowledgments
Financial support by the Ministry of Education, Culture, Sports,
Science, and Technology in Japan in the form of a Grant-in-Aid
for Scientific Research (grant number 25105710) and by Chiba
University (Iodine Research Project) is gratefully acknowledged.
[1] a) K. Friedrick, K. Wallensfels, in: The Chemistry of the Cyano
Group (Ed.: Z. Rappoport), Wiley–Interscience, New York,
1970; b) M. North, in: Comprehensive Organic Functional
Group Transformations (Eds.: A. R. Katritzky, O. Meth-Cohn,
Eur. J. Org. Chem. 2013, 5886–5892
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5891