5700
V. Duprez, A. Heumann / Tetrahedron Letters 45 (2004) 5697–5701
Wakao, M.; Hayakawa, H.; Shimanouchi, T.; Shiro, M. J.
Org. Chem. 1996, 61, 8915.
N
N
9. Glas, H.; Thiel, W. R. Tetrahedron Lett. 1998, 39, 5509.
10. Nagao, Y.; Tamai, S.; Tanigawa, N.; Sano, S.; Kumagai,
T.; Kishi, I. Heterocycles 1998, 48, 617.
Cs2CO3 0.2eq
25˚C, 2d, neat
O
+ 4a
+ 4a
OH
11. Other known compounds 3: 3a Refs. 7–9; 3b Ref. 6; 3h
Refs. 4,5.
9
10 (70%)
12. Kirschke, K. In Methoden der Organischen Chemie (Hou-
ben–Weyl) Hetarene III/Teil 2; Schaumann, E., Ed.;
Thieme: Stuttgart, 1994; Vol. E8b, p 399.
Cs2CO3 0.2eq
N
O
N
OH
13. A recent example with CeCl3: Sabitha, G.; Babu, R. S.;
Rajkumar, M.; Yadav, J. S. Org. Lett. 2002, 2, 343.
14. Some examples: BiCl3: (a) Swamy, N. R.; Kondaji, G.;
Nagaiah, K. Synth. Commun. 2002, 32, 2307; (b) CoCl2:
Iqbal, J.; Pandey, A. Tetrahedron Lett. 1990, 31, 575; (c)
InCl3: Rajender Reddy, L.; Arjun Reddy, M.; Bhanuma-
thi, N.; Rama Rao, K. New J. Chem. 2001, 25, 221; (d)
Ln(OTf)3: Chini, M.; Crotti, P.; Favero, L.; Macchia, F.;
Pineschi, M. Tetrahedron Lett. 1994, 35, 433; (e) SmCl3:
Fu, X.-L.; Wu, S.-H. Synth. Commun. 1997, 27, 1677; (f)
Yb(OTf)3: Meguro, M.; Asao, N.; Yamamoto, Y. J.
Chem. Soc., Perkin Trans. 1 1994, 2597.
63˚C, 20h, neat
11
12 (75%)
Scheme 2.
In order to check the broader generality of our reactions
we also submitted an internal epoxide and another ali-
phatic terminaloxirane to our reaction conditions. Cyclo-
hexene oxide 9 as well as 1,2-epoxybutane 11 were easily
tansformed into the b-hydroxyalkylpyrazole derivatives
1025 and 12, respectively, in good yields and excellent
regioselectivities (Scheme 2).
15. Harris, C. E.; Fisher, G. B.; Beardsley, D.; Lee, L.;
Goralski, C. T.; Nicholson, L. W.; Singaram, B. J. Org.
Chem. 1994, 59, 7746.
In summary, caesium carbonate is a good catalyst for
the regioselective ring-opening of terminal epoxides
under very mild reaction conditions. Propylene oxide
reacts at room temperature whereas styrene oxide re-
quires refluxing temperature in trifluorotoluene as sol-
vent. The transformation is generaland preparativeyl
useful; the observed regioselectivities, with respect the
ring substitution of the pyrazole, but also the generation
of secondary alcohols are acceptable and these type
substrates have already found an application as ligands
16. The catalysis of Li2CO3, Na2CO3, K2CO3, BaCO3, only
lead to trace amounts of aminoalcohols.
17. Caesium carbonate has been found previously to be a
usefulreagent for seelctive N-alkylation: Salvatore, R. N.;
Shin, S. I.; Flanders, V. L.; Jung, K. W. Tetrahedron Lett.
2001, 42, 1799.
18. Review: Fl essner, T.; Doye, S.J. Prakt. Chem. 1999, 341, 186.
19. Ogawa, A.; Curran, D. P. J. Org. Chem. 1997, 62, 450.
20. Typical procedure with propylene oxide: the pyrazole
(1 mmol), propylene oxide (1 mL) and Cs2CO3 (72 mg,
0.2 mmol) are stirred for the indicated time at room
temperature. The propylene oxide is evaporated and the
residue taken up in dichloromethane (1 mL) and stirred
with brine (1–2 · 0.2 mL). The organic solution is sepa-
rated from the aqueous phase, and dried over MgSO4.
After filtration the solvent is evaporated. Often, the
product is pure enough for further use, however, it can
be purified with flash chromatography or by recrystalliza-
tion (petroleum ether/ether or petroleum ether/ethylace-
tate mixtures). 1-(3,5-Dimethylpyrazol-1-yl)-propan-2-ol
(2h): Mp 51–52 °C (petroleum ether/ether). Found: C,
62.17; H, 8.98; N, 18.01. Anal. Calcd for C8H14N2O: C,
62.31%; H, 9.15%; N, 18.17%. 1H NMR: d ¼ 5:73 (s, 1H),
4.06 (m, 2H), 3.88 (dd, J ¼ 4, 14 Hz, 1H), 3.73 (dd, J ¼ 8,
14 Hz, 1H), 2.16 (s, 3H), 2.13 (s, 3H), 1.13 (d, J ¼ 6 Hz,
3H). 13C NMR d ¼ 148:1, 139.99, 105.23, 54.94, 20.62,
13.74, 11.4.
21. Typicalprocedure with styrene oxide: a mixture of the
pyrazole (1 mmol), styrene oxide (240 mg, 2 mmol) and
Cs2CO3 (163 mg, 0.5 mmol) in trifluorotoluene is stirred
and refluxed (102 °C) during (in general) one night. After
cooling the reaction mixture is filtered and the residue
extracted with ether or dichloromethane (5–10 mL). The
combined solutions are dried over MgSO4, filtered and the
solvent evaporated. Excess styrene can be evaporated at
50–60 °C under 0.1 mm high vacuum. Often, the product is
pure enough for further use, however, it can be purified
with flash chromatography or by recrystallization (petro-
leum ether/ether or petroleum ether/ethylacetate mix-
tures). 2-(3,5-Diphenyl-1-pyrazolyl)-1-phenylethanol (3k):
Mp 85 °C (pentane/toluene). Found: C, 81.06; H, 5.97; N,
8.20. Anal. Calcd for C23H20N2O: C, 81.15%; H, 5.92%; N,
8.23%. 1H NMR: d ¼ 7:94–7:99 (m, 2H), 7.29–7.52 (m,
13H), 6.67 (s, 1H), 5.4 (br, 1H), 5.26 (dd, J ¼ 4, 8 Hz, 1H),
26
in metalcatayl zed reactions.
Acknowledgements
We thank Borealis S. A. for financial support. Marius
ꢀ
Reglier’s and Alphonse Tenaglia’s critical discussions
are gratefully acknowledged.
References and notes
1. (a) Trofimenko, S. Chem. Rev. 1993, 93, 943; (b)
Trofimenko, S. Scorpionates, the coordination chemistry
of poly(pyrazolyl)borate ligands; Imperial College: Lon-
don, 1999.
2. Keim, W. Angew. Chem., Int. Ed. Engl. 1990, 29, 235.
3. Finar, I. L.; Utting, K. J. Chem. Soc. 1960, 5272.
4. Wolf, M.; Flanigan, D. J., U.S. 3 303 200, 1967; Chem.
Abstr. 1967, 67, 76002k.
5. Elguero, J.; Fruchier, A.; Jacquier, R. Bull. Soc. Chim. Fr.
1969, 2064.
6. Butler, D. E.; Alexander, S. M. J. Org. Chem. 1972, 37,
215.
7. Katritzky, A. R.; Jayaram, C.; Vassilatos, S. N. Tetra-
hedron 1983, 39, 2023.
8. (a) Kotsuki, H.; Hayakawa, H.; Wakao, M.; Shimanou-
chi, T.; Ochi, M. Tetrahedron: Asymmetry 1995, 6, 2665;
(b) Kotsuki, H.; Hayashida, K.; Shimanouchi, T.; Nishi-
zawa, H. J. Org. Chem. 1996, 61, 984; (c) Kotsuki, H.;