1844 Journal of Natural Products, 2010, Vol. 73, No. 11
Reyes et al.
(79), 55 (50), 41 (22), 18 (35); HRFABMS m/z [M + H]+ 458.3997
(calcd for C30H52O2N, 458.3998).
automatic diffractometer with a CCD area detector at 173(2) K using
graphite- monochromated Mo KR radiation (λ ) 0.71073 Å). The
structure was solved by direct methods and refined by full-matrix least-
squares on F2 using the program SHELXS-97.32 The crystal data are
summarized as follows: empirical formula C30H50O2; formula weight
442.70 amu; crystal color and habit, colorless prism, orthorhombic,
crystal size 0.268 × 0.056 × 0.038 mm, space group P212121, Z ) 4,
a ) 6.230(3) Å, b ) 14.029(8) Å, c ) 29.261(16) Å, V ) 2557(2) Å3;
Dcalcd ) 1.150 Mg/m3; F(000) ) 984, µ ) 0.069 mm-1; 18 537 collected
reflections (2.01° e θ e 25.44°), -7 e h e 7, -16 e k e 16, 35 e
l e 35; 2723 independent reflections (Rint ) 0.0877); goodness-of-fit
on F2 is 1.020, final R indices for I > 2σ(I), R1 ) 0.0877, wR2 ) 0.1724,
R indices for all data R1 ) 0.1560, wR2 ) 0.2023; refining 301
parameters and no restraints; the largest difference peak and hole was
0.289 and -0.266 e Å-3; completeness to θ (25.44°) 99.2%, maximum
transmission 0.9999, minimum transmission 0.9811.
Preparation of 1ꢀ-Hydroxyfriedelin-3,4-lactam (11). Compound
10 (42.0 mg, 0.09 mmol) and p-toluenesulfonyl chloride (14.0 mg, 0.07
mmol) were dissolved in pyridine (1 mL), and the mixture was refluxed
for 5 h. Then, the reaction mixture was cooled and diluted with water
(3 mL), and the product was extracted with CHCl3 (3 × 5 mL). The
organic phases were combined, washed with HCl (10%) and brine, and
dried over anhydrous Na2SO4. Concentration of the organic phase
afforded 11 (39.4 mg, 93.8%).
1ꢀ-Hydroxyfriedelin-3,4-lactam (11): white powder, mp 262-264
°C; [R]25 -13.3 (c 0.10, CHCl3); IR (KBr) νmax 3422, 3257, 3938,
D
1
2868, 1667, 1452, 1192 cm-1; H and 13C NMR, see Tables 2 and 3;
EIMS m/z 457 [M]+ (25), 439 (8), 424 (32), 218 (21), 205 (48), 191
(36), 163 (22), 137 (29), 123 (39), 109 (48), 95 (56), 81 (47), 69 (45),
55 (31), 44 (100), 28 (11); HRFABMS m/z [M + H]+ 458.4000 (calcd
for C30H52O2N, 458.3998).
Acknowledgment. We thank CONACyT (Me´xico) and Programa
de Maestr´ıa y Doctorado en Ciencias Qu´ımicas (UNAM) for financial
support. We also thank E. M. Mart´ınez (Instituto de Biolog´ıa, UNAM),
A. Cano, M. I. Cha´vez, R. Patin˜o, L. Velasco, and J. Pe´rez Flores
(Instituto de Qu´ımica, UNAM) for technical assistance.
Reaction of 1ꢀ-Hydroxyfriedelin (2) with m-CPBA. Compound
2 (30 mg, 0.06 mmol) was dissolved in CHCl3 (15 mL), and then
m-CPBA29 (29.3 mg, 0.16 mmol) was added. The mixture was
refluxed for 6 h. The reaction mixture was diluted with CHCl3, and
the solution was washed successively with 5% Na2SO3(aq), saturated
NaHCO3, and brine and dried with Na2SO4. The solution was
evaporated in vacuo, and the residue was separated by silica gel
CC eluted with mixtures of n-hexane and EtOAc, to afford
compounds 12 (4.2 mg, 13.5%), 13 (4.8 mg, 16.6%), and 14 (3.7
mg). Compound 13 was identified by direct comparison with data
reported in the literature.12,30
1
Supporting Information Available: H and 13C spectra of com-
pounds 1-3, 6-8, 10-12, and 14, CD curve, and X-ray crystal-
lographic data for 2 are provided. This information is available free of
1ꢀ-Hydroxyfriedelin-3,4-lactone (12): amorphous solid (CHCl3);
[R]25D +17.1 (c 0.10, CHCl3); IR (KBr) νmax 3364, 2939, 2867, 1720,
1447, 1384, 1306, 1265, 1183, 1076 cm-1; 1H and 13C NMR, see Tables
2 and 3; EIMS m/z 458 [M]+ (1), 173 (12), 83 (100), 55 (35), 43 (7),
18 (5); HRFABMS m/z 459.3832 [M + H]+ (calcd for C30H51O3,
459.3838).
References and Notes
(1) Abdel-Fattah, M. R. Bot. J. Linnean Soc. 1987, 94, 293–326.
(2) Hohmann, J.; Evanics, F.; Berta, L.; Barto´k, T. Planta Med. 2000,
66, 291–294.
(3) Mujumdar, A. M.; Misar, A. V. J. Ethnopharmacol. 2004, 90, 11–15.
(4) Quian-Cutrone, J.; Huang, S.; Trimble, J.; Li, H.; Lin, P. F.; Alam,
M.; Klohr, S. E.; Kadow, K. F. J. Nat. Prod. 1996, 59, 196–199.
(5) Hegazy, M. E. F.; Mohamed, A. E. H. H.; Aoky, N.; Ikeuchi, T.;
Ohta, E.; Ohta, S. Phytochemistry 2010, 71, 249–253.
(6) Delgado, G.; Herna´ndez, J.; Rios, M. Y.; Aguilar, M. I. Planta Med.
1994, 60, 389–390.
4r-Hydroxyfriedel-1-en-3-one (14): white crystals (CHCl3); mp
266-268 °C; [R]25 -90 (c 0.10, CHCl3); UV (MeOH) λmax (log ε)
D
238 (3.84) nm; IR (CDCl3) νmax 2931, 2866, 2867, 1674, 1463, 1388,
1
1235, 1172, 1073 cm-1; H and 13C NMR, see Tables 2 and 3; EIMS
m/z 440 [M]+ (43), 412 (12), 397 (13), 218 (13), 205 (26), 152 (30),
109 (31), 95 (73), 69 (100), 67 (42), 55 (29), 18 (87); HRFABMS m/z
440.3651 [M]+ (calcd for C30H48O2, 440.3654).
(7) Garc´ıa, A.; Delgado, G. HelV. Chim. Acta 2006, 89, 16–29.
(8) Garc´ıa, A.; Ram´ırez-Apan, T.; Cogordan, J. A.; Delgado, G. Can.
J. Chem. 2006, 84, 1593–1602.
Cytotoxic Assays. Human tumor cell lines leukemia (K562),
central nervous system (U251, Glia), colon (HCT-15), breast (MCF-
7), lung (SKLU-1), and prostate cancer (PC-3) were supplied by
the National Cancer Institute. The cytotoxic activities of 1-14 and
of the n-hexane and ethyl acetate extracts on tumor cells were
determined using the protein-binding dye sulforhodamine B (SRB)
in a microculture assay to measure cell growth.13 The cells were
cultured in RPMI-1640 (Sigma Chemical Co., Ltd., St. Louis, MO),
supplemented with 10% fetal bovine serum, 2 µM L-glutamine, 100
IU/mL penicillin G, 100 µg/mL streptomycin sulfate, and 0.25 µg/
mL amphotericin B (Gibco). They were maintained at 37 °C in a
5% CO2 atmosphere with 95% humidity. For the assay, 5 × 104
cells/mL (K562, MCF-7), 7.5 × 104 cells/mL (U251, PC-3, SKLU-
1), and 10 × 104 cells/mL (HCT-15) with 100 µL/well of the cell
suspensions were seeded in 96-well microtiter plates and incubated
to allow cell attachment. After 24 h, 100 µL of each test compound,
extract, or positive control was added (all test substances were
dissolved in DMSO). After 48 h, adherent cell cultures were fixed
in situ by adding 50 µL of cold 50% (w/v) aqueous trichloroacetic
acid (TCA) and incubated for 60 min at 4 °C. The supernatant was
discarded, and the plates were washed three times with H2O and
then air-dried. Cultures fixed with TCA were stained for 30 min
with 100 µL of 0.4% SRB solution. Protein-bound dye was extracted
with 10 µΜ unbuffered Tris base, and the optical densities were
read on an Ultra microplate reader (E1x 808, Bio-Tek Instruments,
Inc.), at a wavelength of 515 nm. Results were expressed as
concentration giving 50% inhibition (IC50). The data were calculated
according to the protocol of Monks,13 where a dose-response curve
was plotted for each compound; the IC50 values were estimated from
linear regression equations. The IC50 values (mean ( standard error)
for 1, 4-6, 14, and the positive control (adriamycin) are reported
in the text.
(9) Garc´ıa, A.; Delgado, G. J. Nat. Prod. 2006, 69, 1618–1621.
(10) Mart´ınez, M.; Jime´nez, J.; Cruz, R.; Jua´rez, E.; Garc´ıa, R.; Cervantes,
A.; Mej´ıa, R. An. Inst. Biol. (UNAM), Ser. Bot. 2002, 73, 155–281.
(11) Monteiro, C.; Manta, C.; Justino, F.; Tavares, R.; Curto, M. J. M.;
Pedro, M.; Nascimiento, M. S. J.; Pinto, M. J. Nat. Prod. 2004, 67,
1193–1196.
(12) Monteiro, C.; Justino, F.; Tavares, R.; Curto, M. J. M.; Florencio,
M. H.; Nascimiento, M. S. J.; Pedro, M.; Cerqueira, F.; Pinto,
M. M. M. J. Nat. Prod. 2001, 64, 1273–1277.
(13) Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica,
D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-
Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. J. Natl. Cancer Inst.
1991, 83, 757–766.
(14) Patra, A.; Chaudhuri, S. K. Indian J. Chem. 1989, 28B, 376–380.
(15) Maciel, M. A. M.; Pinto, A. C.; Brabo, S. N.; Da Silva, M. N.
Phytochemistry 1998, 49, 823–828.
(16) Addae-Mensah, I.; Achenbach, H.; Thoithi, G. N.; Waibel, R.; Mwangi,
J. W. Phytochemistry 1992, 31, 2055–2058.
(17) Bellido, S. I.; Polla´n, M. S.; Caballero, E.; Gonza´lez, M. S. Phy-
tochemistry 1985, 24, 2758–2760.
(18) Lane, A. M.; Kubanek, J. Phytochemistry 2006, 67, 1224–1231.
(19) Jayasinghe, L.; Mallika, B. M.; Nishantha, K. H. R.; Gayathri,
N. W. M.; Ratnayake, B. M.; Hara, N.; Fujimoto, Y. Phytochemistry
2003, 62, 637–641.
(20) Choi, S. Z.; Yang, M. C.; Choi, S. U.; Lee, K. R. Arch. Pharm. Res.
2006, 29, 203–208.
(21) Ito, A.; Kasai, R.; Yamasaki, K.; Duc, N. M.; Nham, N. T.
Phytochemistry 1994, 37, 1455–1458.
(22) Berova, N.; Nakanishi, K., Woody, R. W. Circular Dichroism.
Principles and Applications; Wiley: New York, 2000; Chapter 10.
(23) Bass, W. J. Phytochemistry 1985, 24, 1875–1889.
(24) Zeynizadeh, B.; Behyar, T. Bull. Chem. Soc. Jpn. 2005, 78, 307–315.
(25) Hunter, A. C.; Priest, S. M. Steroids 2006, 71, 30–33.
(26) Klass, J.; Tinto, W. F.; McLean, S.; Reynolds, W. F. J. Nat. Prod.
1992, 55, 1626–1630.
X-ray Structure Determination of 1ꢀ-Hydroxyfriedelin (2).31 The
X-ray crystallographic data were measured on a Bruker Smart Apex
(27) Joshi, B. S.; Kamat, V. N.; Viswanathan, N. Tetrahedron 1973, 29,
1365–1374.