RESEARCH FRONT
Membrane-Based Sensing Approaches
61
membrane-related processes such as the functional incorpora-
tion of membrane proteins. Furthermore, they can be used as a
sensing platform that can host engineered sensing peptides such
as the here presented valinomycin derivatives. By being able
to attach a selected binding group to the still functional depsi-
peptide, a wide range of sensing possibilities can be envisioned.
Here, as a proof of concept, the synthesis of a redox sensor has
been shown.
The bare membrane architectures can also be used for
sensing purposes. For example, the presence of membrane
active peptides or proteins can be detected by monitoring
changes in the electrical properties of the membrane. However,
the intrinsic membrane architecture, i.e., the molecular structure
of the anchor lipids used in the formation of the system, has a
significant influence both on the properties of the membrane as
well as on its ability to host membrane proteins.
[21] S. Terrettaz, H. Vogel, MRS Bull. 2005, 30, 207.
[22] R. F. Roskamp, I. K. Vockenroth, N. Eisenmenger, J. Braunagel,
I. Ko¨per, ChemPhysChem 2008, 9, 1920. doi:10.1002/CPHC.
200800248
[23] R. Naumann, S. M. Schiller, F. Giess, B. Grohe, K. B. Hartman,
I. Karcher, I. Ko¨per, J. Lubben, K. Vasilev, W. Knoll, Langmuir 2003,
19, 5435. doi:10.1021/LA0342060
[24] I. Ko¨per, Mol. Biosyst. 2007, 3, 651. doi:10.1039/B707168J
[25] I. K. Vockenroth, C. Rossi, M. R. Shah, I. Ko¨per, Biointerphases 2009,
4, 19. doi:10.1116/1.3122019
[26] J. Kunze, J. Leitch, A. L. Schwan, R. J. Faragher, R. Naumann,
S. Schiller, W. Knoll, J. R. Dutcher, J. Lipkowski, Langmuir 2006,
22, 5509. doi:10.1021/LA0535274
[27] A. Junghans, I. Ko¨per, Langmuir 2010, 26, 11035. doi:10.1021/
LA100342K
[28] I. K. Vockenroth, C. Ohm, J. W. F. Robertson, D. J. McGillivray,
M. Lo¨sche, I. Ko¨per, Biointerphases 2008, 3, FA68. doi:10.1116/
1.2912097
[29] H. Hillebrandt, M. Tanaka, E. Sackmann, J. Phys. Chem. B 2002, 106,
Accessory Publication
477. doi:10.1021/JP011693O
[30] G. Stark, R. Benz, J. Membr. Biol. 1971, 5, 133. doi:10.1007/
BF02107720
Analytical data for ferrocene–valinomycin and EIS measure-
ments are available on the Journal’s website.
[31] G. Favero, L. Campanella, A. D’Annibale, R. Santucci, T. Ferri,
Microchem. J. 2003, 74, 141. doi:10.1016/S0026-265X(02)00179-0
[32] B. Raguse, V. L. B. Braach-Maksvytis, B. A. Cornell, L. G. King,
P. D. J. Osman, R. J. Pace, L. Wieczorek, Langmuir 1998, 14, 648.
doi:10.1021/LA9711239
References
[1] B. A. Cornell, V. L. B. Braach-Maksvytis, L. G. King, P. D. J. Osman,
B. Raguse, L. Wieczorek, R. J. Pace, Nature 1997, 387, 580.
doi:10.1038/42432
[33] H. Brockmann, G. Schmidt-Kastner, I. Valinomycin, Chem. Ber.
[2] M. Winterhalter, Curr. Opin. Colloid Interface Sci. 2000, 5, 250.
doi:10.1016/S1359-0294(00)00063-7
[3] G. M. Bell, L. L. Combs, L. J. Dunne, Chem. Rev. 1981, 81, 15.
doi:10.1021/CR00041A002
[4] A. Ottova, V. Tvarozek, J. Racek, J. Sabo, W. Ziegler, T. Hianik,
H. T. Tien, Supramol. Sci. 1997, 4, 101. doi:10.1016/S0968-5677(96)
00054-5
1955, 88, 57. doi:10.1002/CBER.19550880111
[34] M. M. Schemjakin, Angew. Chem. 1960, 72, 342. doi:10.1002/ANGE.
19600721003
[35] M. Rothe, W. Kreiss, Angew. Chem. Int. Ed. Engl. 1973, 12, 1012.
doi:10.1002/ANIE.197310121
[36] C. Gilon, Y. Klausner, A. Hassner, Tetrahedron Lett. 1979, 20, 3811.
doi:10.1016/S0040-4039(01)95531-5
[5] E. Sackmann, Science 1996, 271, 43. doi:10.1126/SCIENCE.271.
5245.43
[37] B. F. Gisin, A. R. Dhundale, Int. J. Pept. Protein Res. 1979, 14, 356.
doi:10.1111/J.1399-3011.1979.TB01944.X
[38] J. Hanzl´ık, Z. Samec, J. Hovorka, J. Electroanal. Chem. 1987, 216,
[6] C. Steinem, A. Janshoff, W.-P. Ulrich, M. Sieber, H.-J. Galla, Biochim.
Biophys. Acta 1996, 1279, 169. doi:10.1016/0005-2736(95)00274-X
[7] W. Knoll, C. W. Frank, C. Heibel, R. Naumann, A. Offenha¨user,
J. Ru¨he, E. K. Schmidt, W. W. Shen, A. Sinner, Rev. Mol. Biotechnol.
2000, 74, 137. doi:10.1016/S1389-0352(00)00012-X
[8] A. E. Vallejo, C. A. Gervasi, Bioelectrochem 2002, 57, 1.
doi:10.1016/S1567-5394(01)00127-X
303. doi:10.1016/0022-0728(87)80217-6
[39] B. Neises, W. Steglich, Angew. Chem. Int. Ed. Engl. 1978, 17, 522.
doi:10.1002/ANIE.197805221
[40] R. Naumann, D. Walz, S. M. Schiller, W. Knoll, J. Electroanal. Chem.
2003, 550–551, 241. doi:10.1016/S0022-0728(03)00013-5
[41] G. Valincius, D. J. McGillivray, W. Febo-Ayala, D. J. Vanderah,
J. J. Kasianowicz, M. Lo¨sche, J. Phys. Chem. B 2006, 110, 10213.
doi:10.1021/JP0616516
[9] E. Sackmann, Science 1996, 271, 43. doi:10.1126/SCIENCE.271.
5245.43
[10] J. Spinke, J. Yang, H. Wolf, M. Liley, H. Ringsdorf, W. Knoll,
Biophys. J. 1992, 63, 1667. doi:10.1016/S0006-3495(92)81742-3
[11] L. K. Tamm, H. M. McConnell, Biophys. J. 1985, 47, 105.
doi:10.1016/S0006-3495(85)83882-0
[12] M. Winterhalter, Curr. Opin. Colloid Interface Sci. 2000, 5, 250.
doi:10.1016/S1359-0294(00)00063-7
[42] P. P. Atanasova, V. Atanasov, I. Ko¨per, Langmuir 2007, 23, 7672.
doi:10.1021/LA7002854
[43] V. Atanasov, N. Knorr, R. S. Duran, S. Ingebrandt, A. Offenha¨user,
W. Knoll, I. Ko¨per, Biophys. J. 2005, 89, 1780. doi:10.1529/
BIOPHYSJ.105.061374
[44] I. K. Vockenroth, P. P. Atanasova, A. T. A. Jenkins, I. Ko¨per,
[13] N. Fertig, A. Tilke, R. H. Blick, J. P. Kotthaus, J. C. Behrends, G. ten
Bruggencate, Appl. Phys. Lett. 2000, 77, 1218. doi:10.1063/1.1289490
[14] T. J. Jeon, N. Malmstadt, J. J. Schmidt, J. Am. Chem. Soc. 2006, 128,
42. doi:10.1021/JA056901V
[15] I. K. Vockenroth, C. Ohm, J. W. F. Robertson, D. J. McGillivray,
M. Lo¨sche, I. Ko¨per, Biointerphases 2008, 3, FA68. doi:10.1116/
1.2912097
[16] I. Ko¨per, S. M. Schiller, F. Giess, R. Naumann, W. Knoll, Adv. Planar
Lipid Bilayers 2006, 3, 37. doi:10.1016/S1554-4516(05)03002-4
[17] S. M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, W. Knoll, Angew.
Chem. 2003, 42, 208. doi:10.1002/ANIE.200390080
[18] S. Terrettaz, M. Mayer, H. Vogel, Langmuir 2003, 19, 5567.
doi:10.1021/LA034197V
Langmuir 2008, 24, 496. doi:10.1021/LA7030279
[45] L. H. He, J. W. F. Robertson, J. Li, I. Karcher, S. M. Schiller, W. Knoll,
R. Naumann, Langmuir 2005, 21, 11666. doi:10.1021/LA051771P
[46] D. J. McGillivray, G. Valincius, D. J. Vanderah, W. Febo-Ayala, J. T.
Woodward, F. Heinrich, J. J. Kasianowicz, M. Losche, Biointerphases
2007, 2, 21. doi:10.1116/1.2709308
[47] J. A. Dura, D. J. Pierce, C. F. Majkrzak, N. C. Maliszewskyj, D. J.
McGillivray, M. Lo¨sche, K. V. O’Donovan, M. Mihailescu, U. Perez-
Salas, D. L. Worcester, S. H. White, Rev. Sci. Instrum. 2006, 77,
074301. doi:10.1063/1.2219744
[48] S. Krueger, C. W. Meuse, C. F. Majkrzak, J. A. Dura, N. F. Berk,
M. Tarek, A. L. Plant,Langmuir 2001, 17, 511. doi:10.1021/LA001134T
[49] B. Schuster, D. Pum, O. Braha, H. Bayley, U. B. Sleytr, Biochim.
Biophys. Acta 1998, 1370, 208.
[19] I. K. Vockenroth, P. P. Atanasova, A. T. A. Jenkins, I. Ko¨per,
Langmuir 2008, 24, 496. doi:10.1021/LA7030279
[20] C. A. Keller, B. Kasemo, Biophys. J. 1998, 75, 1397. doi:10.1016/
S0006-3495(98)74057-3
[50] S. Cheley, M. S. Malghani, L. Song, M. Hobaugh, J. E. Gouaux,
J. Yang, H. Bayley, Protein Eng. 1997, 10, 1433. doi:10.1093/
PROTEIN/10.12.1433