Journal of Chemical Information and Modeling
Article
(10) Childers, W. E., Jr.; Havran, L. M.; Asselin, M.; Bicksler, J. J.;
Chong, D. C.; Grosu, G. T.; Shen, Z.; Abou-Gharbia, M. A.; Bach, A.
C., 3rd; Harrison, B. L.; Kagan, N.; Kleintop, T.; Magolda, R.;
Marathias, V.; Robichaud, A. J.; Sabb, A. L.; Zhang, M. Y.; Andree, T.
H.; Aschmies, S. H.; Beyer, C.; Comery, T. A.; Day, M.; Grauer, S. M.;
Hughes, Z. A.; Rosenzweig-Lipson, S.; Platt, B.; Pulicicchio, C.; Smith,
D. E.; Sukoff-Rizzo, S. J.; Sullivan, K. M.; Adedoyin, A.; Huselton, C.;
Hirst, W. D. The Synthesis and Biological Evaluation of Quinolyl-
Piperazinyl Piperidines as Potent Serotonin 5-HT1A Antagonists. J.
Med. Chem. 2010, 53, 4066−4084.
Serotonin Receptors Revealed by Mutation and Molecular Modeling
of Conserved Residues in Transmembrane Region 5. Mol. Pharmacol.
2000, 58, 877−886.
(29) Warne, T.; Moukhametzianov, R.; Baker, J. G.; Nehme, R.;
Edwards, P. C.; Leslie, A. G.; Schertler, G. F.; Tate, C. G. The
Structural Basis for Agonist and Partial Agonist Action on a Beta(1)-
Adrenergic Receptor. Nature 2011, 469, 241−244.
(30) Halgren, T. A. Merck Molecular Force Field. I. Basis, Form,
Scope, Parameterization, and Performance of MMFF94. J. Comput.
Chem. 1996, 17, 490−519.
́ ́
(31) Dilly, S.; Scuvee-Moreau, J.; Wouters, J.; Liegeois, J.-F. The 5-
(11) Khatri, M.; Rai, S. K.; Alam, S.; Vij, A.; Tiwari, M. Synthesis and
Pharmacological Evaluation of New Arylpiperazines N-[4-[4-(Aryl)
Piperazine-1-yl]-Phenyl]-Amine Derivatives: Putative Role of 5-HT1A
Receptors. Bioorg. Med. Chem. 2009, 17, 1890−1897.
HT1A agonism potential of substituted-piperazine-ethyl-amide de-
rivatives is conserved in the hexyl homologues: molecular modeling
and pharmacological evaluation. J. Chem. Inf. Model. 2011, 51, 2961−
2966.
(12) Mangin, F.; Dilly, S.; Joly, B.; Scuvee
́
-Moreau, J.; Evans, J.;
(32) Lovell, S. C.; Davis, I. W.; Arendall, W. B.; de Bakker, P. I. W.;
Word, J. M.; Prisant, M. G.; Richardson, J. S.; Richardson, D. C.
Structure Validation by Calpha Geometry: Phi, Psi and Cbeta
Deviation. Proteins: Struct., Funct., Genet. 2003, 50, 437−450.
(33) Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R.
Development and Validation of a Genetic Algorithm for Flexible
Docking. J. Mol. Biol. 1997, 267, 727−748.
(34) Korb, O.; Stutzle, T.; Exner, T. E. Empirical Scoring Functions
for Advanced Protein-Ligand Docking with PLANTS. J. Chem. Inf.
Model. 2009, 49, 84−96.
Setola, V.; Roth, B. L.; Liegeois, J.-F. Moderate Chemical
́
Modifications of WAY-100635 Improve the Selectivity for 5-HT1A
versus D4 Receptors. Bioorg. Med. Chem. Lett. 2012, 22, 4550−4554.
(13) Marchais-Oberwinkler, S.; Nowicki, B.; Pike, V. W.; Halldin, C.;
Sandell, J.; Chou, Y. H.; Gulyas, B.; Brennum, L. T.; Farde, L.;
Wikstrom, H. V. N-oxide Analogs of WAY-100635: New High Affinity
5-HT(1A) Receptor Antagonists. Bioorg. Med. Chem. 2005, 13, 883−
893.
(14) SYBYL, version 8.0; Tripos Inc.: St. Louis, MO, 2008.
(15) Consortium, T. U. O. a. f. d. a. t. U. P. R. N. A. R., 39, D214-
D219. Ongoing and future developments at the Universal Protein
Resource. Nucleic Acids Res. 2011, 39, D214−D219.
(35) Graulich, A.; Leo
́
nard, M.; Res
́
imont, M.; Huang, X. P.; Roth, B.
L.; Lieg
́
eois, J.-F. Chemical Modifications on 4-Arylpiperazine-Ethyl
Carboxamide Derivatives Differentially Modulate Affinity for 5-HT1A,
D4.2, and α2A Receptors: Synthesis and In Vitro Radioligand Binding
Studies. Aust. J. Chem. 2010, 63, 56−67.
(36) Ho, B. Y.; Karschin, A.; Branchek, T.; Davidson, N.; Lester, H.
A. The Role of Conserved Aspartate and Serine Residues in Ligand
Binding and in Function of the 5-HT1A Receptor: a Site-Directed
Mutation Study. FEBS Lett. 1992, 312, 259−262.
(37) Nowak, M.; Kolaczkowski, M.; Pawlowski, M.; Bojarski, A. J.
Homology Modeling of the Serotonin 5-HT1A Receptor using
Automated Docking of Bioactive Compounds with Defined Geometry.
J. Med. Chem. 2006, 49, 205−214.
(19) Shi, J.; Blundell, T. L.; Mizuguchi, K. FUGUE: Sequence-
Structure Homology Recognition Using Environment-Specific Sub-
stitution Tables and Structure-Dependent Gap Penalties. J. Mol. Biol.
2001, 310, 243−257.
(20) Baldwin, J. M.; Schertler, G. F.; Unger, V. M. An Alpha-Carbon
Template for the Transmembrane Helices in the Rhodopsin Family of
G-Protein-Coupled Receptors. J. Mol. Biol. 1997, 272, 144−164.
(38) Kuipers, W.; Link, R.; Standaar, P. J.; Stoit, A. R.; Van
Wijngaarden, I.; Leurs, R.; Ijzerman, A. P. Study of the Interaction
between Aryloxypropanolamines and Asn386 in Helix VII of the
Human 5-Hydroxytryptamine1A Receptor. Mol. Pharmacol. 1997, 51,
889−896.
́
(21) Dilly, S.; Liegeois, J.-F. Interaction of Clozapine and its
Nitrenium Ion with Rat D2 Dopamine Receptors: In Vitro Binding
and Computational Study. J. Comput.-Aided Mol. Des. 2011, 25, 163−
169.
́
(39) Dilly, S.; Graulich, A.; Liegeois, J.-F. Molecular Modeling Study
of 4-Phenylpiperazine and 4-Phenyl-1,2,3,6-Tetrahydropyridine De-
rivatives: a New Step Towards the Design of High-Affinity 5-HT1A
Ligands. Bioorg. Med. Chem. Lett. 2010, 20, 1118−1123.
(22) Warne, T.; Serrano-Vega, M. J.; Baker, J. G.; Moukhametzianov,
R.; Edwards, P. C.; Henderson, R.; Leslie, A. G.; Tate, C. G.; Schertler,
G. F. Structure of a Beta1-Adrenergic G-Protein-Coupled Receptor.
Nature 2008, 454, 486−491.
(23) Saunders, M. Stochastic Exploration of Molecular Mechanics
Energy Surfaces. Hunting for the Global Minimum. J. Am. Chem. Soc.
1987, 109, 3150−3152.
(24) Ballesteros, J. A.; Weinstein, H. [19] Integrated Methods for the
Construction of Three-Dimensional Models and Computational
Probing of Structure-Function Relations in G Protein-Coupled
Receptors. Methods Neurosci. 1995, 25, 366−428.
(25) Bywater, R. P. Location and Nature of the Residues Important
for Ligand Recognition in G-Protein Coupled Receptors. J. Mol.
Recognit. 2005, 18, 60−72.
(40) Lieg
́
eois, J.-F.; Lespagnard, M.; Meneses Salas, E.; Mangin, F.;
Scuvee-Moreau, J.; Dilly, S. Enhancing a CH-pi Interaction to Increase
́
the Affinity for 5-HT1A Receptors. ACS Med. Chem. Lett. 2014, 5,
358−362.
(41) Burley, S. K.; Petsko, G. A. Aromatic-Aromatic Interaction: a
Mechanism of Protein Structure Stabilization. Science 1985, 229, 23−
28.
(42) Cummings, D. F.; Ericksen, S. S.; Goetz, A.; Schetz, J. A.
Transmembrane Segment Five Serines of the D4 Dopamine Receptor
Uniquely Influence the Interactions of Dopamine, Norepinephrine,
and Ro10−4548. J. Pharmacol. Exp. Ther. 2010, 333, 682−695.
(26) Choudhary, M. S.; Craigo, S.; Roth, B. L. A Single Point
Mutation (Phe340 → Leu340) of a Conserved Phenylalanine
Abolishes 4-[125I]iodo-(2,5-dimethoxy)phenylisopropylamine and
[3H]mesulergine but not [3H]ketanserin Binding to 5-Hydroxytrypt-
amine2 Receptors. Mol. Pharmacol. 1993, 43, 755−761.
(27) Salom, D.; Lodowski, D. T.; Stenkamp, R. E.; Le Trong, I.;
Golczak, M.; Jastrzebska, B.; Harris, T.; Ballesteros, J. A.; Palczewski,
K. Crystal Structure of a Photoactivated Deprotonated Intermediate of
Rhodopsin. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 16123−16128.
(28) Shapiro, D. A.; Kristiansen, K.; Kroeze, W. K.; Roth, B. L.
Differential Modes of Agonist Binding to 5-Hydroxytryptamine(2A)
H
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX