Communication
ChemComm
and Materials Science ed. A. Greenberg, C. M. Breneman and J. F.
Liebman, Wiley-VCH, New York, 2000.
2 For a recent review, see: (a) R. M. Lanigan and T. D. Sheppard, Eur.
´
J. Org. Chem., 2013, 7453; (b) A. Ojeda-Porras and D. Gamba-Sanchez,
J. Org. Chem., 2016, 81, 11548; (c) M. T. Sabatini, L. T. Boulton,
H. F. Sneddon and T. D. Sheppard, Nat. Catal., 2019, 2, 10. Aryl amides
are versatile building blocks in organic synthesis; for examples, see:
(d) X. Wang, Nat. Catal., 2019, 2, 98; (e) L. Hie, N. F. Fine Nathel,
T. K. Shah, E. L. Baker, X. Hong, Y.-F. Yang, P. Liu, K. N. Houk and
N. K. Garg, Nature, 2015, 524, 79; ( f ) L.-H. Li, Z.-J. Niu and Y.-M. Liang,
Chem. – Eur. J, 2017, 23, 15300; (g) Y.-H. Huang, S.-R. Wang, D.-P. Wu
and P.-Q. Huang, Org. Lett., 2019, 21, 1681.
3 For recent reviews, see: (a) E. Valeur and M. Bradley, Chem. Soc. Rev., 2009,
38, 606; (b) A. El-Faham and F. Albericio, Chem. Rev., 2011, 111, 6557;
(c) J. R. Dunetz, J. M. Javier Magano and G. A. Weisenburger, Org. Process
Res. Dev., 2016, 20, 140; (d) R. M. de Figueiredo, J.-S. Suppo and J.-M.
Campagne, Chem. Rev., 2016, 116, 12029.
Scheme 5 The halide effect of Ni(II) salts on aminocarbonylation.
4 For selected reviews, see: (a) C. F. J. Barnard, Organometallics, 2008,
27, 5402; (b) A. Brennfu¨hrer, H. Neumann and M. Beller, Angew.
Chem., Int. Ed., 2009, 48, 4114; (c) S. Roy, S. Roy and G. W. Gribble,
Tetrahedron, 2012, 68, 9867; (d) S. Sumino, A. Fusano, T. Fukuyama
and I. Ryu, Acc. Chem. Res., 2014, 47, 1563; (e) P. Gautam and
B. M. Bhanage, Catal. Sci. Technol., 2015, 5, 4663; ( f ) J.-B. Peng,
F.-P. Wu and X.-F. Wu, Chem. Rev., 2019, 119, 2090.
5 (a) C. L. Allen and J. M. J. Williams, Chem. Soc. Rev., 2011, 40, 3405;
(b) X.-F. Wu, H. Neumann and M. Beller, ChemSusChem, 2013,
6, 229; (c) Y. Li, Y. Hu and X.-F. Wu, Chem. Soc. Rev., 2018, 47, 172.
6 (a) W. Li and X.-F. Wu, Chem. – Eur. J., 2015, 21, 7374. For the
subsequent related work, see: (b) Z. Yin, Z. Wang, W. Li and X.-F.
Wu, Eur. J. Org. Chem., 2017, 1769.
in which the counter anion could be chloride or O-centered
ligands [trimethylsilanolate (TMS-OÀ), hydroxide (OHÀ)]] originated
from the reduction process of nitroarene. Ni(II) salts then undergo
ligand substitution with NaI to form NiIII2, which further reacts
with PPh3 to form ligated NiIII2 complexes 6 [Scheme S2(b),
ESI†]. We speculated that the formation of complex 6 could
prevent Ni precipitation with O-centered ligands.23 The good
leaving group ability of iodide23 also enables rapid iodide dis-
sociation from 6, providing a vacant site to effect transmetala-
tion of arylboronic acid via the activation with TMS-OÀ or OHÀ,
as well as to effect the subsequent CO insertion to form acyl-NiII
intermediate 7 [Scheme S2(c), ESI†]. 1,2-Diaryl hydrazine bears a
7 L. Ren, X. Li and N. Jiao, Org. Lett., 2016, 18, 5852.
8 J. Zhang, Y. Ma and Y. Ma, Eur. J. Org. Chem., 2018, 1720.
9 J. Zhang, Y. Hou, Y. Ma and M. Szostak, J. Org. Chem., 2019, 84, 338.
10 X. Fang, R. Jackstell and M. Beller, Angew. Chem., Int. Ed., 2013, 52, 14089.
11 F. Zhou, D.-S. Wang, X. Guan and T. G. Driver, Angew. Chem., Int. Ed.,
2017, 56, 4530.
weak N–N bond (bond dissociation energy B39 kcal molÀ1 24
)
12 C. W. Cheung, M. L. Ploeger and X. Hu, Chem. Sci., 2018, 9, 655.
13 J.-B. Peng, H.-Q. Geng, D. Li, X. Qi, J. Ying and X.-F. Wu, Org. Lett.,
2018, 20, 4988.
14 For recent examples of direct amide synthesis via the amidation of
carboxylic acid derivatives with nitroarenes, see: (a) C. W. Cheung,
M. L. Ploeger and X. Hu, Nat. Commun., 2017, 8, 14878; (b) C. W.
Cheung, M. L. Ploeger and X. Hu, ACS Catal., 2017, 7, 7092; (c) C. W.
Cheung, J.-A. Ma and X. Hu, J. Am. Chem. Soc., 2018, 140, 6789;
(d) C. W. Cheung, N. Shen, S.-P. Wang, A. Ullah, X. Hu and J.-A. Ma,
Org. Chem. Front., 2019, 6, 756.
15 For selected examples of direct amine synthesis using nitroarenes as
substrates, see: (a) C. W. Cheung and X. Hu, Nat. Commun., 2016,
7, 12494; (b) J. Xiao, Y. He, F. Ye and S. Zhu, Chem, 2018, 4, 1645; (c) T. V.
Nykaza, J. C. Cooper, G. Li, N. Mahieu, A. Ramirez, M. R. Luzung and
and likely splits readily into amino radicals, which then react
with 7 to give NiIII(acyl)(amino) complex 8 [Scheme S2(d), ESI†].
Finally, 7 undergoes reductive elimination to afford the amide
product, while the co-product Ni(I) species could disproportionate
to regenerate NiIII2 and Ni(0).25 The detailed reaction mechanism
will be subjected to a future dedicated study.
In summary, we have disclosed an alternative aminocarbonyla-
tion method for amide synthesis using readily available carbon
monoxide, arylboronic acids, and nitroarenes as reaction sub-
strates. Nickel metal serves as both a reductant and mediator in
this protocol. Diverse aryl amines could be synthesized, including
several drug-like molecules. Further advancement of the reaction
protocol, especially the endeavour to use safer carbon monoxide
surrogates instead of the more toxic carbon monoxide, are under-
way in our laboratory.
´
A. T. Radosevich, J. Am. Chem. Soc., 2018, 140, 15200; (d) S. Suarez-Pantiga,
´
R. Hernandez-Ruiz, C. Virumbrales, M. R. Pedrosa and R. Sanz, Angew.
Chem., Int. Ed., 2019, 58, 2129; (e) M. Rauser, R. Eckert, M. Gerbershagen
and M. Niggemann, Angew. Chem., Int. Ed., 2019, 58, 6713.
16 J.-B. Peng, D. Li, H.-Q. Geng and X.-F. Wu, Org. Lett., 2019, 21, 4878.
¨
˙
17 E. A. -Sener, O. T. Arpacı, I. Yalçın and N. Altanlar, IL Farmaco, 2000,
55, 397.
We acknowledged the National Natural Science Foundation
of China (No. 21532008, 21772142, 21901181, and 21971186)
and Tianjin University for financial support.
¨
¨
˙
18 O. T. Arpacı, I. Oren and N. Altanlar, IL Farmaco, 2002, 57, 175.
19 M. G. Vigorita, G. Saporito, G. T. Previtera, F. C. Pizzimenti and
G. Bisignano, Farmaco Sci., 1986, 41, 168.
20 (a) H.-U. Blaser, Science, 2006, 313, 312; (b) H.-U. Blaser, H. Steiner
and M. Studer, ChemCatChem, 2009, 1, 210.
21 H. Nakajima, S. Shimizu, K. Onuki, Y. Ikezoe and S. Sato, Nippon
Kagaku Kaishi, 1984, 8, 1257.
22 R. H. Tale, G. K. Toradmal, V. B. Gopula, A. H. Rodge, R. P. Pawar
and K. M. Patil, Tetrahedron Lett., 2015, 56, 2699.
23 P. M. Maitlis, A. Haynes, B. R. James, M. Catellanic and
G. P. Chiusolic, Dalton Trans., 2004, 3409.
Conflicts of interest
There are no conflicts to declare.
24 Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC
Press, Boca Raton, 2007.
Notes and references
1 (a) The Chemistry of Amides ed. J. Zabicky, Wiley-VCH, New York, 1970; 25 A. A. Danopoulos, T. Simler and P. Braunstein, Chem. Rev., 2019,
(b) The Amide Linkage: Structural Significance in Chemistry, Biochemistry, 119, 3730.
13712 | Chem. Commun., 2019, 55, 13709--13712
This journal is ©The Royal Society of Chemistry 2019