M. Seepersaud, Y. Al-Abed / Tetrahedron Letters 42 (2001) 1471–1473
1473
Scheme 4.
which was then subjected to hydrogenolysis to afford
trehazolin 3 (Scheme 4).
1179; (f) Crimmins, M. T.; King, B. W. J. Org. Chem.
1996, 61, 4192.
5. (a) Seepersaud, M.; Al-Abed, Y. Org. Lett. 1999, 1, 1463;
(b) Seepersaud, M.; Bucala, R.; Al-Abed, Y. Z. Natur-
forsch. 1999, 54b, 565.
6. Seepersaud, M.; Al-Abed, Y. Tetrahedron Lett. 2000, 41,
7801.
Of note, the a-allylic alcohol 4a is the right candidate
for the direct synthesis of trehazolamine, however, all
attempts at diastereoselective epoxidation failed, and an
inseparable mixture of epoxides were obtained.
7. Arco, M. J.; Trammel, M. H.; White, J. D. J. Org. Chem.
1976, 2075.
8. Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev.
1993, 93, 1307.
9. Shiozaki, M.; Arai, M.; Kobayashi, Y.; Kasuya, A.;
Miyamoto, S.; Furukawa, Y.; Takayama, T.; Haruyama,
H. J. Org. Chem. 1994, 59, 4450.
Overall this is the first use of the RCM in the construc-
tion of trehazoline intermediates. This method repre-
sents
a
simple and direct preparation of the
aminocyclopentitol core. The synthesis involved nine
steps with an overall yield of 32%. The strategy allows
for the stereocontrolled preparation of a series of
diverse analogs of trehazaloamine.
10. Selected spectroscopic data for compounds are as fol-
1
lows. Epoxide 9: H NMR (CDCl3, 500 MHz) l 2.86 (d,
J=10.8 Hz, O-H), 3.43 (d, J=11.6 Hz, CH2-OBn), 3.54
(s, H5), 3.74 (d, J=7.3 Hz, H3), 4.04 (s, H2), 4.20 (d,
J=11.6 Hz, CH2-OBn), 4.28 (ABq, J=11.4 Hz, Dl=0.07
ppm, 2H), 4.44 (dd, J=7.3, 10.8 Hz, H4), 4.47 (d, J=13.5
Hz, 2H), 4.48 (ABq, J=12.0 Hz, Dl=0.17 ppm, 2H),
7.28 (m, 15H). 13C NMR (CDCl3, 67.5 MHz) l 62.3,
64.8, 66.7, 71.7, 72.6, 73.2, 73.3, 79.1, 81.0, 127.8–128.7
(several signals), 137.3, 137.5, 138.0. MS (ES) m/z (M+
Na+), 455, (M+NH+4), 450 (base peak). Epoxide 13: 1H
NMR (CDCl3, 500 MHz) l 2.56 (bs, O-H), 3.58 (d,
J=11.2 Hz, CH2-OBn), 3.59 (s, H5), 3.84 (dd, J=5.2, 6.0
Hz, H3), 3.94 (d, J=11.2 Hz, CH2-OBn), 4.20 (d, J=5.2
Hz, H4), 4.28 (d, J=6.0 Hz, H2), 4.55 (ABq, J=11.8 Hz,
Dl=0.08 ppm, 2H), 4.56 (s, 2H), 4.7 (ABq, J=11.8 Hz,
Dl=0.03 ppm, 2H). 13C NMR (CDCl3, 67.5 MHz) l
60.2, 64.3, 66.8, 70.0, 72.6, 73.1, 73.2, 81.8, 82.5, 127.8–
128.7 (several signals), 137.2, 137.7, 138.2. MS (ES) m/z
(M+Na+), 455, (M+NH+4), 450 (base peak). Aminocy-
clopentitol 11: 1H NMR (C6D6, 270 MHz) l 3.17 (d,
J=6.0 Hz, H5), 3.65 (ABq, J=9.4 Hz, Dl=0.2 ppm, 2H,
CH2-OBn), 3.93 (dd, J=6.0, 7.0 Hz, H4), 4.07 (dd, J=
6.0, 7.0 Hz, H3), 4.15 (d, J=6.0 Hz, H2), 4.21 (s, 2H),
4.45 (ABq, J=11.6 Hz, Dl=0.06 ppm, 2H), 4.70 (ABq,
J=11.9 Hz, Dl=0.14 ppm, 2H), 7.31 (m, 15H). 13C
NMR (CDCl3, 67.5 MHz). l 66.0, 69.2, 72.9 (two sig-
nals), 73.9, 75.3, 79.8, 81.4, 89.0, 127.8–128.6 (several
signals), 137.6, 137.8, 138.3. MS (ES) m/z (M+H+), 450
(base peak), 391, 279.
Acknowledgements
The authors would like to thank the Patterson founda-
tion for their support.
References
1. (a) Varki, A. Glycobiology 1993, 3, 97; (b) Dwek, R. A.
Chem. Rev. 1996, 96, 683; (c) McGarvey, G. J.; Wong, C.
H. Liebigs. Ann./Receuil. 1997, 1059; (d) Winchester, B.;
Fleet, G. W. J. Glycobiology 1992, 2, 199.
2. (a) Berecibar, A.; Granjean, C.; Siriwardena, A. Chem.
Rev. 1999, 99, 779; (b) Kobayashi, Y. Carbohydr. Res.
1999, 315, 3; (c) Kassab, D. J.; Ganem, B. J. Org. Chem.
1999, 64, 1782; (d) Clark, M. A.; Goering, B. K.; Li, J.;
Ganem, B. J. Org. Chem. 2000, 4058.
3. Storch de Gracia, I.; Bobo, S.; Martin-Ortega, M. D.;
Chiara, J. L. Org. Lett. 1999, 1, 1705.
4. (a) Grubbs, R. H.; Miller, S. J. Acc. Chem. Res. 1995, 28,
446; (b) Nicaloau, K. C.; He, Y.; Vouloumis, D.; Vall-
berg, H.; Roschangar, F.; Sarabia, F.; Ninkovic, S.;
Yang, Z.; Trujillo, J. I. J. Am. Chem. Soc. 1997, 119,
10073; (c) Crimmins, M. T.; Choy, A. L. J. Org. Chem.
1997, 62, 7548; (d) Schmalz, H. G. Angew. Chem., Int.
Ed. Engl. 1995, 34, 1833; (e) Arisawa, M.; Takezawa, E.;
Nishida, A.; Miwako, M.; Nakagawa, M. Synlett 1997,
.