Asymmetric Hydrosilylation of Styrenes
J . Org. Chem., Vol. 66, No. 4, 2001 1447
1
For phosphine oxides 7b-f and phosphines 2b-f, spectral
and analytical data are shown below:
analysis and H NMR study of the reaction mixture indicated
that 1-phenyl-1-(trichlorosilyl)ethane (4a ) was formed quan-
titatively. The crude mixture was purified by bulb-to-bulb
distillation under reduced pressure to give 520 mg (100% yield)
of 1-phenyl-1-(trichlorosilyl)ethane (4a ).
(R)-2-Bis(4-m eth oxyp h en yl)p h osp h in yl-1,1′-bin a p h th -
yl (7b): 61% yield; [R]20 -54.3 (c 1.00, CHCl3); 1H NMR δ
D
3.68 (s, 3H), 3.73 (s, 3H), 6.49 (d, J ) 6.9 Hz, 2H), 6.56 (d, J
) 6.9 Hz, 2H), 6.84 (d, J ) 8.4 Hz 1H), 7.0-7.7 (m, 13H), 7.93
(d, J ) 8.3 Hz, 1H), 7.99 (d, J ) 7.8 Hz, 2H); 13C{1H} NMR δ
54.37, 55.49, 112.52, 113.59, 123.1-134.8, 143.39, 161.21; 31P-
{1H} NMR δ 28.9 (s). Anal. Calcd for C34H27O3P: C, 79.36; H,
5.29. Found: C, 79.16; H, 5.57.
The results obtained for the asymmetric hydrosilylation of
styrenes 3a -n are summarized in Tables 1 and 2. 1H NMR
data for the hydrosilylation products are shown below:
1-P h en yl-1-(tr ich lor osilyl)eth a n e (4a ): H NMR δ 1.64
(d, J ) 7.6 Hz, 3H), 2.89 (q, J ) 7.6 Hz, 1H), 7.20-7.38 (m,
5H).
1-(2-Met h ylp h en yl)-1-(t r ich lor osilyl)et h a n e (4b ): 1H
NMR δ 1.60 (d, J ) 7.3 Hz, 3H), 2.36 (s, 3H), 3.16 (q, J ) 7.3
Hz, 1H), 7.05-7.33 (m, 4H).
1
(R)-2-Bis(4-tr iflu or om eth ylp h en yl)p h osp h in yl-1,1′-bi-
n a p h th yl (7c): 65% yield; [R]20D -3.8 (c 1.01, CHCl3); 1H NMR
δ 6.91 (d, J ) 8.3 Hz, 1H), 7.06 (d, J ) 6.4 Hz, 2H), 7.12 (dd,
J ) 6.9, 8.3 Hz, 1H), 7.20 (d, J ) 8.3 Hz, 1H), 7.2-7.8 (m,
14H), 7.95 (d, J ) 8.3 Hz, 1H), 8.01 (d, J ) 8.8 Hz, 1H); 13C-
{1H} NMR δ 122.1-136.9, 144.59, 171.01; 31P{1H} NMR δ 26.2
(s). Anal. Calcd for C34H21F6OP: C, 69.16; H, 3.58. Found: C,
69.46; H, 3.79.
1-(3-Met h ylp h en yl)-1-(t r ich lor osilyl)et h a n e (4c): 1H
NMR δ 1.60 (d, J ) 7.4 Hz, 3H), 2.35 (s, 3H), 2.85 (q, J ) 7.4
Hz, 1H), 7.0-7.1 (m, 3H), 7.21 (t, J ) 7.8 Hz, 1H).
1-(4-Met h ylp h en yl)-1-(t r ich lor osilyl)et h a n e (4d ): 1H
NMR δ 1.60 (d, J ) 7.6 Hz, 3H), 2.33 (s, 3H), 2.85 (q, J ) 7.6
Hz, 1H), 7.13 (s, 4H).
1-(2-Ch lor oph en yl)-1-(tr ich lor osilyl)eth an e (4e): 1H NMR
δ 1.60 (d, J ) 7.6 Hz, 3H), 3.62 (q, J ) 7.6 Hz, 1H), 7.14-7.46
(m, 4H).
1-(3-Ch lor oph en yl)-1-(tr ich lor osilyl)eth an e (4f): 1H NMR
δ 1.61 (d, J ) 7.6 Hz, 3H), 2.87 (q, J ) 7.6 Hz, 1H), 7.09-7.30
(m, 4H).
(R)-2-Bis(3-tr iflu or om eth ylp h en yl)p h osp h in yl-1,1′-bi-
n a p h th yl (7d ): 79% yield; [R]20 +8.98 (c 1.00, CHCl3); 1H
D
NMR δ 6.87 (d, J ) 8.9 Hz, 2H), 7.1-7.8 (m, 15H), 7.9-8.0
(m, 4H); 31P{1H} NMR δ 25.5 (s). Anal. Calcd for C34H21OF6P:
C, 69.14; H,3.59. Found: C, 68.89; H, 3.36.
(R)-2-Bis(3,5-d im eth ylp h en yl)p h osp h in yl-1,1′-bin a p h -
1
th yl (7e): 97% yield; [R]20 -12.1 (c 1.01, CHCl3); H NMR δ
D
1.90 (s, 6H), 2.08 (s, 6H), 6.47 (s, 1H), 6.7-7.6 (m, 15H), 7.8-
7.9 (m, 3H); 13C{1H} NMR δ 20.52, 21.14, 21.77, 123.8-133.3,
134.44, 134.54, 136.62, 136.71, 137.13, 137.26, 143.85; 31P{1H}
NMR δ 28.5 (s). Anal. Calcd for C36H31OP: C, 84.68; H, 6.12.
Found: C, 84.41; H, 6.47.
1-(4-Ch lor op h en yl)-1-(t r ich lor osilyl)et h a n e (4g): 1H
NMR δ 1.60 (d, J ) 7.6 Hz, 3H), 2.87 (q, J ) 7.6 Hz, 1H), 7.17
(d, J ) 8.6 Hz, 2H), 7.30 (d, J ) 8.6 Hz, 2H).
1-(3-Br om op h en yl)-1-(t r ich lor osilyl)et h a n e (4h ): 1H
NMR δ 1.60 (d, J ) 7.3 Hz, 3H), 2.85 (q, J ) 7.3 Hz, 1H),
7.16-7.22 (m, 2H), 7.38-7.41 (m, 2H).
(R)-2-Bis(3,5-d ich lor op h en yl)p h osp h in yl-1,1′-bin a p h -
1
th yl (7f): 64% yield; [R]20 +26.5 (c 0.45, CHCl3); H NMR δ
D
6.84 (s, 2H), 6.90 (d, J ) 8.6 Hz, 1H), 6.95 (dd, J ) 2.0, 12.2
Hz, 1H), 7.2-7.8 (m, 13H), 7.98 (d, J ) 8.3 Hz, 1H), 8.04 (dd,
J ) 2.6, 8.6 Hz, 1H); 31P{1H}NMR δ 23.8 (s). Anal. Calcd for
1-(4-Br om oph en yl)-1-(tr ich lor osilyl)eth an e (4i): 1H NMR
δ 1.60 (d, J ) 7.4 Hz, 3H), 2.86 (q, J ) 7.4 Hz, 1H), 7.11 (d, J
) 8.6 Hz, 2H), 7.45 (d, J ) 8.6 Hz, 2H).
C
32H19Cl4PO: C, 65.09; H, 3.25. Found: C, 64.84; H, 3.16.
(R)-2-Bis(4-m eth oxyp h en yl)p h osp h in o-1,1′-bin a p h th -
1-(4-Meth oxyp h en yl)-1-(tr ich lor osilyl)eth a n e (4j): 1H
NMR δ 1.59 (d, J ) 7.6 Hz, 3H), 2.84 (q, J ) 7.6 Hz, 1H), 3.80
(s, 3H), 6.87 (d, J ) 8.6 Hz, 2H), 7.16 (d, J ) 8.6 Hz, 2H).
1-(3-Nitr oph en yl)-1-(tr ich lor osilyl)eth an e (4k): 1H NMR
δ 1.68 (d, J ) 7.4 Hz, 3H), 3.04 (q, J ) 7.4 Hz, 1H), 7.52 (t, J
) 8.3 Hz, 1H), 7.59 (d, J ) 7.9 Hz, 1H), 8.10-8.15 (m, 2H).
1-P h en yl-1-(tr ich lor osilyl)p r op a n e (4l): 1H NMR δ 0.93
(t, J ) 7.3 Hz, 3H), 1.89-2.29 (m, 2H), 2.62 (dd, J ) 11.6, 4.0
Hz, 1H), 7.14-7.43 (m, 5H).
yl (2b); 91% yield; [R]20 -91.2 (c 1.00, CHCl3); 1H NMR δ
D
3.72 (s, 3H), 3.77 (s, 3H), 6.72 (d, J ) 7.9 Hz, 2H), 6.82 (d, J
) 8.3 Hz, 2H), 7.01 (d, J ) 6.8 Hz, 1H), 7.03 (d, J ) 7.4 Hz,
1H), 7.1-7.4 (m, 13H), 7.84 (t, J ) 8.8 Hz, 2H), 7.89 (dd, J )
7.3, 7.9 Hz, 2H); 13C{1H} NMR δ 55.13, 55.16 (OMe), 113.92,
123.9-137.4, 144.36, 159.87; 31P{1H} NMR δ -16.3(s). Anal.
Calcd for C34H27O2P: C, 81.91; H, 5.46. Found: C, 81.64; H,
5.70.
(R)-2-Bis(4-t r iflu or om et h ylp h en yl)p h osp h in o-1,1′-b i-
1-P h en yl-3-m eth oxy-1-(tr ich lor osilyl)p r op a n e (4m ): 1H
NMR δ 2.05-2.22 (m, 1H), 2.29-2.46 (m, 1H), 3.00 (dd, J )
11.9, 3.6 Hz, 1H), 3.13-3.23 (m, 1H), 3.25 (s, 3H), 3.33-3.43
(m, 1H), 7.16-7.43 (m, 5H).
1-P h en yl-3-ben zyloxy-1-(tr ich lor osilyl)p r op a n e (4n ):
1H NMR δ 2.09-2.24 (m, 1H), 2.36-2.52 (m, 1H), 3.05 (dd, J
) 11.9, 3.7 Hz, 1H), 3.22-3.35 (m, 1H), 3.44-3.55 (m, 1H),
4.34 (d, J ) 11.9 Hz, 1H), 4.43 (d, J ) 11.9 Hz, 1H), 7.14-
7.46 (m, 10H).
Oxid a tion of Hyd r osilyla tion P r od u cts 4a -n . Typ ica l
P r oced u r e. To a suspension of potassium fluoride (690 mg,
11.9 mmol) and potassium bicarbonate (1.76 g, 17.6 mmol) in
100 mL of THF/MeOH (1/1) was added 1-phenyl-1-(trichloro-
silyl)ethane (4a ) (460 mg, 1.90 mmol). To the suspension was
added 2.0 mL of 30% hydrogen peroxide at ambient temper-
ature, and the reaction mixture was vigorously stirred for 11
h. To the reaction mixture was added 10 mL of saturated
Na2S2O3 solution, and then the entire mixture was stirred for
1 h. The mixture was filtered through a Celite plug, and the
filter cake was rinsed with ether. The filtrate was concentrated
in vacuo, and the resulting residue was extracted with ether.
After the residue was dried over anhydrous magnesium
sulfate, the solvent was removed in vacuo and the resulting
crude mixture was chromatographed on silica gel (hexane/ethyl
acetate ) 5/1) to give 225 mg (97% yield) of 1-phenylethanol
(5a ):
n a p h t h yl (2c): 80% yield; [R]20 -69.9 (c 1.00, CHCl3); 1H
D
NMR δ 6.97 (d, J ) 8.6 Hz, 1H), 7.0-7.5 (m, 16H), 7.8-7.9
(m, 4H); 13C{1H} NMR δ 122.9-133.8, 136.9, 142.3, 146.1; 31P-
{1H} NMR δ -13.3(s). Anal. Calcd for C34H21F6P: C, 71.08;
H, 3.68. Found: C, 70.87; H, 3.95.
(R)-2-Bis(3-t r iflu or om et h ylp h en yl)p h osp h in o-1,1′-b i-
n a p h th yl (2d ): 93% yield; [R]20 -53.6 (c 1.10, CHCl3); 1H
D
NMR δ 7.04 (d, J ) 8.3 Hz, 1H), 7.1-7.6 (m, 16H), 7.92 (d, J
) 8.6 Hz, 3H), 7.96 (d, J ) 8.6 Hz, 1H); 31P{1H} NMR δ -12.66
(s). Anal. Calcd for C34H21F6P: C, 71.06; H, 3.69. Found: C,
70.84; H, 3.68.
(R)-2-Bis(3,5-d im et h ylp h en yl)p h osp h in o-1,1′-b in a p h -
1
th yl (2e): 90% yield; [R]20 -52.7 (c 1.01, CHCl3); H NMR δ
D
2.13 (s, 6H), 2.21 (s, 6H), 6.71 (d, J ) 7.8 Hz, 2H), 6.78 (s,
1H), 6.86 (d, J ) 7.8 Hz, 2H), 6.91 (s, 1H), 7.1-7.4 (m, 9H),
7.8-7.9 (m, 4H); 13C{1H} NMR δ 21.19, 21.31, 124.9-137.6,
144.72, 144.94; 31P{1H} NMR δ -12.7 (s). Anal. Calcd for
C
36H31P: C, 87.42; H, 6.32. Found: C, 87.14; H, 6.31.
(R)-2-Bis(3,5-d ich lor op h en yl)p h osp h in o-1,1′-b in a p h -
1
th yl (2f): 74% yield; [R]20 -38.3 (c 0.88, CHCl3); H NMR δ
D
6.86 (dd, J ) 2.0, 6.9 Hz, 2H), 7.04 (d, J ) 6.6 Hz, 2H), 7.2-
7.6 (m, 11H), 7.9-8.0 (m, 4H); 31P{1H} NMR δ -10.4 (s). Anal.
Calcd for C32H19Cl4P: C, 66.90; H, 3.34. Found: C, 66.82; H,
3.61.
Asym m etr ic Hyd r osilyla tion of Styr en es. Typ ica l P r o-
ced u r e. To a mixture of [PdCl(η3-C3H5)]2 (0.37 mg, 2.0 µmol
Pd), (R)-H-MOP (2a ) (1.77 mg, 4.0 µmol), and styrene (3a )
(2144 mg, 2.05 mmol) was added trichlorosilane (0.25 mL, 2.5
mmol) at 0 °C. The mixture was stirred at 0 °C for 12 h. GC
Specific rotations of alcohols 5a -n obtained by the asym-
metric hydrosilylation are shown in Table 2. The reported
specific rotation values for the alcohols 5a -l are as follows.