A. Kumar, H. K. Akula, M. K. Lakshman
FULL PAPER
The reaction mixture was slowly brought to 0 °C and allowed to
stir for 1 h. The reaction was quenched with saturated aqueous
NH4Cl (5 mL) and extracted with EtOAc (20 mL). The organic
layer was separated, dried with Na2SO4, and concentrated. Chro-
matographic purification on a silica gel column (35% EtOAc in
hexanes) afforded 3 (96.2 mg, 97%) as a colorless, viscous liquid.
[1]
R. C. Larock, Comprehensive Organic Transformations, 2nd ed.,
Wiley-VCH, New York, 1999.
[2] a) Y. Rao, X. Li, S. J. Danishefsky, J. Am. Chem. Soc. 2009,
131, 12924–12926; b) L. J. Gooßen, D. M. Ohlmann, P. P.
Lange, Synthesis 2009, 160–164; c) J. Burés, M. Martín, F.
Urpí, J. Vilarrasa, J. Org. Chem. 2009, 74, 2203–2206; d) L. U.
Nordstrøm, H. Vogt, R. Madsen, J. Am. Chem. Soc. 2008, 130,
17672–17673; e) G. E. Veitch, K. L. Bridgwood, S. V. Ley, Org.
Lett. 2008, 10, 3623–3625; f) S. Y. Seo, T. J. Marks, Org. Lett.
2008, 10, 317–319; g) K. R. Reddy, C. U. Maheswari, M. Venk-
ateshwar, M. L. Kantam, Eur. J. Org. Chem. 2008, 3619–3622;
h) C. Gunanathan, Y. Ben-David, D. Milstein, Science 2007,
317, 790–792; i) T. Maki, K. Ishihara, H. Yamamoto, Tetrahe-
dron 2007, 63, 8645–8657; j) M. Matsugi, M. Hasegawa, D.
Sadachika, S. Okamoto, M. Tomioka, Y. Ikeya, A. Masuyama,
Y. Mori, Tetrahedron Lett. 2007, 48, 4147–4150; k) E. Valeur,
M. Bradley, Tetrahedron 2007, 63, 8855–8871; l) A. Novak,
L. D. Humphreys, M. D. Walker, S. Woodward, Tetrahedron
Lett. 2006, 47, 5767–5769; m) M. Zhang, P. Vedantham, D. L.
Flynn, P. R. Hanson, J. Org. Chem. 2004, 69, 8340–8344; n)
M. S. Nery, R. P. Ribeiro, C. C. Lopes, R. S. C. Lopes, Synthe-
sis 2003, 272–276; o) P. Li, J.-C. Xu, Tetrahedron 2000, 56,
4437–4445; p) A. R. Katritzky, H.-Y. He, K. Suzuki, J. Org.
Chem. 2000, 65, 8210–8213.
[3] X. Lin, M. J. Robins, Org. Lett. 2000, 2, 3497–3499.
[4] J. Zlatko, X. Lin, M. J. Robins, Nucleosides Nucleotides Nucleic
Acids 2004, 23, 137–147.
[5] S. Bae, M. K. Lakshman, J. Org. Chem. 2008, 73, 1311–1319.
[6] S. Bae, M. K. Lakshman, J. Org. Chem. 2008, 73, 3707–3713.
[7] M. K. Lakshman, A. Choudhury, S. Bae, E. Rochttis, P. Prad-
han, A. Kumar, Eur. J. Org. Chem. 2009, 152–159.
[8] A. V. Narasaiah, D. Sreenu, K. Nagaiah, Synth. Commun.
2006, 36, 137–140.
1
Rf (40% EtOAc in hexanes) = 0.62. H NMR (500 MHz, CDCl3):
3
δ = 7.49 (d, JH,H = 8.3 Hz, 1 H, Ar-H), 7.44 (s, 1 H, Ar-H), 6.81
3
(d, JH,H = 8.3 Hz, 1 H, Ar-H), 3.86 (s, 3 H, OMe), 3.85 (s, 3 H,
OMe), 2.48 (s, 3 H, COCH3) ppm. This compound is commercially
available.
N-(3,4-Dimethoxybenzoyl)indoline (4):[49] 1H NMR (500 MHz,
3
CDCl3, ambient temperature): δ = 7.21 (d, JH,H = 7.4 Hz, 1 H,
3
Ar-H), 7.16 (dd, JH,H = 1.8, 8.2 Hz, 1 H, Ar-H), 7.14 (s, 1 H, Ar-
3
H), 7.11 (br. s, 1 H, Ar-H), 7.00 (t, JH,H = 7.1 Hz, 1 H, Ar-H),
3
3
6.89 (d, JH,H = 8.2 Hz, 1 H, Ar-H), 3.66 (t, JH,H = 8.3 Hz, 2 H,
3
NCH2), 3.41 (s, 3 H, OCH3), 3.38 (s, 3 H, OCH3), 2.51 (t, JH,H
=
8.3 Hz, 2 H, CH2) ppm. 1H NMR (500 MHz, C6D6, 70 °C): δ =
7.94 (br. s, 1 H, Ar-H), 7.09 (s, 1 H, Ar-H), 7.04 (d, 3JH,H = 7.8 Hz,
3
3
1 H, Ar-H), 7.00 (t, JH,H = 7.8 Hz, 1 H, Ar-H), 6.91 (d, JH,H
=
3
7.3 Hz, 1 H, Ar-H), 6.83 (t, JH,H = 7.3 Hz, 1 H, Ar-H), 3.66 (t,
3JH,H = 8.3 Hz, 2 H, NCH2), 3.41 (s, 3 H, OCH3), 3.38 (s, 3 H,
3
OCH3), 2.51 (t, JH,H = 8.3 Hz, 2 H, CH2) ppm.
N-(Piperonoyl)indoline (6):[49] To a stirring solution of I2 (253.8 mg,
1.0 mmol) in dry CH2Cl2 (5 mL) at 0 °C was added Pol–PPh3
(438.0 mg, 1.0 mmol). The reaction mixture was flushed with nitro-
gen gas and allowed to stir at 0 °C for 5 min. At this temperature,
piperonylic acid (166.1 mg, 1.0 mmol) was added, followed by the
dropwise addition of iPr2NEt (260.0 µL, 1.5 mmol) and indoline
(112 µL, 1.0 mmol). The reaction mixture was slowly brought to
room temperature and allowed to stir for 2 h. The mixture was
filtered and evaporated to dryness. Chromatographic purification
on a silica gel column (30% EtOAc in hexanes) afforded 6
(199.2 mg, 74%) as a colorless solid. Rf (40% EtOAc in hexanes)
= 0.60. 1H NMR (500 MHz, CDCl3, ambient temperature): δ =
[9] a) F.-A. Kang, Z. Sui, W. V. Murray, Eur. J. Org. Chem. 2009,
461–479; b) F.-A. Kang, Z. Sui, W. V. Murray, J. Am. Chem.
Soc. 2008, 130, 11300–11302.
[10] P. Fr øyen, Synth. Commun. 1995, 25, 959–968.
[11] B. P. Bandgar, S. V. Bettigeri, Synth. Commun. 2004, 34, 2917–
2924.
3
7.21 (d, JH,H = 7.4 Hz, 1 H, Ar-H), 7.18–7.09 (br. s, 1 H, Ar-H),
[12] J. Garcia, F. Urpí, J. Vilarrasa, Tetrahedron Lett. 1984, 25,
7.09 (dd, 3JH,H = 1.5, 8.0 Hz, 1 H, Ar-H), 7.04 (s, 1 H, Ar-H), 7.01
4841–4844.
3
3
(t, JH,H = 7.4 Hz, 1 H, Ar-H), 6.85 (d, JH,H = 8.0 Hz, 1 H, Ar-
[13] L. E. Barstow, V. J. Hruby, J. Org. Chem. 1971, 36, 1305–1306.
[14] S.-i. Yamada, Y. Takeuchi, Tetrahedron Lett. 1971, 12, 3595–
3598.
[15] R. d. C. Rodriguez, I. M. A. Barros, E. L. S. Lima, Tetrahedron
Lett. 2005, 46, 5945–5947.
[16] C. R. Harrison, P. Hodge, B. J. Hunt, E. Koshdel, G. Richard-
son, J. Org. Chem. 1983, 48, 3721–3728.
[17] H.-P. Buchstaller, H. M. Ebert, U. Anlauf, Synth. Commun.
2001, 31, 1001–1005.
[18] S.-Y. Han, Y.-A. Kim, Tetrahedron 2004, 60, 2447–2467.
[19] X. Yang, V. B. Birman, Org. Lett. 2009, 11, 1499–1502.
[20] R. Salvio, L. Moisan, D. Ajami, J. Rebek Jr., Eur. J. Org. Chem.
2007, 2722–2728.
[21] M. Lysen, S. Kelleher, M. Begtrup, J. L. Kristensen, J. Org.
Chem. 2005, 70, 5342–5343.
3
H), 6.03 (s, 2 H, OCH2), 4.10 (t, JH,H = 7.9 Hz, 2 H, indolinyl-
H), 3.11 (t, JH,H = 7.9 Hz, 2 H, indolinyl-H) ppm. 1H NMR
3
(500 MHz, C6D6, 70 °C): δ = 7.93 (br. s, 1 H, Ar-H), 6.99 (t, 3JH,H
= 8.0 Hz, 1 H, Ar-H), 6.96 (s, 1 H, Ar-H), 6.89 (d, 3JH,H = 7.8 Hz,
3
3
1 H, Ar-H), 6.82 (t, JH,H = 7.3 Hz, 1 H, Ar-H), 6.51 (d, JH,H
7.8 Hz, 1 H, Ar-H), 5.29 (s, 2 H, OCH2), 3.51 (t, JH,H = 8.0 Hz,
2 H, NCH2), 2.45 (t, JH,H = 8.0 Hz, 2 H, CH2) ppm.
=
3
3
Supporting Information (see footnote on the first page of this arti-
cle): Copies of the 1H NMR spectra of all amides and Weinreb
amides shown in Tables 1 and 2; 13C NMR spectrum of N-(3,5-
1
dinitro)benzoylpyrrolidine; H NMR spectra of 3, 4, 6, anhydroly-
1
chorinonine and hippadine; H–1H COSY spectra of 4 and 6.
[22] A. Tetsuaki, F. Xie, A. Tsutomu, U. Shuji, I. Toshimasa, I.
Yasuko, I. Chuzo, M. Naoyoshi, J. Chin. Chem. Soc. (Taipei)
2000, 47, 865–868.
Acknowledgments
[23] S. L. MacNeil, M. Gray, D. G. Gusev, L. E. Briggs, V. Snieckus,
J. Org. Chem. 2008, 73, 9710–9719.
[24] I. Mohammadpoor-Baltork, M. M. Sadeghi, K. Esmayilpour,
Synth. Commun. 2003, 33, 953–959.
Partial support of this work by the National Science Foundation
(NSF) (Grant CHE-0640417), the National Institutes of Health
(NIH) (Grant 5S06 GM008168-30), and a PSC CUNY award to
M. K. L. is acknowledged. Mr. Tom Melninkaitis and Mr. Scott
Klepfer (Biotage) are thanked for a sample of Pol–PPh3 (PS-tri-
phenylphosphane) used in this work, and Dr. Padmanava Pradhan
is thanked for his assistance with some NMR experiments. Infra-
structural support was provided by Research Centers at Minority
Institutions (Grant NIH/NCRR/RCMI – G12 RR03060).
[25]
[26]
[27]
A. V. Karnik, S. S. Kamath, Tetrahedron: Asymmetry 2008, 19,
45–48.
N. Zanatta, D. Faoro, S. C. Silva, H. G. Bonacorso, M. A. P.
Martins, Tetrahedron Lett. 2004, 45, 5689–5691.
P. A. Grieco, D. S. Clark, G. P. Withers, J. Org. Chem. 1979,
44, 2945–2947.
2714
www.eurjoc.org
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2010, 2709–2715