990
J. Am. Chem. Soc. 2001, 123, 990-991
Scheme 1
On the Reversible Nature of the Olefin Cross
Metathesis Reaction
Amos B. Smith, III,* Christopher M. Adams, and
Sergey A. Kozmin†
Department of Chemistry
Monell Chemical Senses Center, and
Laboratory for Research on the Structure of Matter
UniVersity of PennsylVania
Philadelphia, PennsylVania 19104
ReceiVed October 23, 2000
The olefin ring-closing metathesis (RCM) reaction has emerged
as one of the most powerful transforms in organic synthesis.1
Indeed, the broad scope and reliability of this reaction has greatly
simplified the total synthesis of a wide variety of architecturally
complex natural and unnatural products.2 We first became
interested in the metathesis process during the synthesis of a
family of novel naturally occurring paracyclophanes known as
the cylindrocyclophanes (A-F).3,4
catalysts,5 with the Schrock catalyst furnishing the best yield
(72%).4c The observation of only one of the seven possible dimers
[(-)-3] suggested a cascade of reversible olefin metatheses,6 a
result supported by recent work from the Grubbs and Hoveyda
laboratories demonstrating the reversible nature of the olefin
metathesis reaction.7
To explore the observed selectivity of this olefin dimerization,
we carried out a series of Monte Carlo conformational searches8
using the MM2 force field9 (Macromodel 6.0). The calculations
indicated that the [7,7]-E,E-macrocycle (3) indeed possesses the
lowest-energy structure by ∼2.6-4.7 kcal/mol relative to the other
possible dimers (Figure 1),10 indicating that the naturally occurring
[7,7]-paracyclophane skeleton is the thermodynamically most
stable.
During the course of this venture we demonstrated that cross
metathesis dimerization (Scheme 1) provides an efficient tactic
for the construction of the C2-symmetric skeleton of the
cylindrocyclophanes.4c Of the seven possible cyclic dimers of (-)-
2, including those having either seven carbons between the
aromatic rings (3-5) or eight and six carbons (6-9), only (-)-3
was observed when subjected to either the Grubbs or Schrock
† Current address: Department of Chemistry, University of Chicago.
(1) For recent reviews on olefin metathesis, see: (a) Grubbs, R. H.; Chang,
S. Tetarhedron 1998, 54, 4413. (b) Armstrong, S. K. J. Chem. Soc., Perkin
Trans. 1 1998, 371. (c) Wright, D. L. Curr. Org. Chem. 1999, 3, 211. (d)
Fu¨rstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012.
Figure 1. Energy values for the lowest-energy conformation of the seven
possible geometrical/constitutional isomers (see Scheme 2).
(2) (a) Fu¨rstner, A.; Langemann, K. J. Org. Chem. 1996, 61, 8746 (b) Kim,
S. H.; Figueroa, I.; Fuchs, P. L. Tetrahedron Lett. 1997, 38, 2601. (c) Meng,
D.; Bertinato, P.; Balog, A.; Su, D.; Kamenecka, T.; Sorensen, E. J.;
Danishefsky, S. J. J. Am. Chem. Soc. 1997, 119, 10073. (d) Scholl, M.; Grubbs,
R. H. Tetrahedron Lett. 1999, 40, 1425. (e) Dixon, D. J.; Foster, A. C.; Ley,
S. V. Org. Lett. 2000, 2, 123. (f) Lee, D.; Sello, J. K.; Schreiber, S. L. J. Am.
Chem. Soc. 1999, 121, 10648 (g) Paquette, L. A.; Tae, J.; Arrington, M. P.;
Sadoun, A. H. J. Am. Chem. Soc. 2000, 122, 2742.
(3) (a) Moore, B. S.; Chen, J.-L.; Patterson, G. M.; Moore, R. M.; Brinen,
L. S.; Kato, Y.; Clardy, J. J. Am. Chem. Soc. 1990, 112, 4061. (b) Moore, B.
S.; Chen, J.-L.; Patterson, G. M.; Moore, R. E. Tetrahedron 1992, 48, 3001.
(c) Bobzin, S. C.; Moore, R. E. Tetrahedron 1993, 49, 7615.
(4) For recent syntheses of the cylindrocyclophanes see: (a) Smith, A. B.,
III; Kozmin, S. A.; Paone, D. V. J. Am. Chem. Soc. 1999, 121, 7423. (b)
Hoye, T. R.; Humpal, P. E.; Moon, B. J. Am. Soc. Chem. 2000, 122, 4982.
(c) Smith, A. B., III; Kozmin, S. A.; Adams, C. M.; Paone, D. V. J. Am.
Chem. Soc. 2000, 122, 4984.
To provide experimental evidence for the reversible cascade
of the olefin metatheses in the dimerization of (-)-2, we selected
trienes 14 and 15, both predisposed to form the [8,6]-macrocycle
(5) (a) Schrock R. R.; Murdzek, JS.; Bazan, G. C.; Robbins, J.; DiMare,
M.; O’Reagan, M. J. Am. Chem. Soc. 1990, 112, 3875. (b) Schwab, P.; France,
M. B.; Ziller, J. W. Grubbs, R. H. Angew. Chem., Int. Ed. Engl. 1995, 34,
2039. (c) Scholl, M.; Ding, S.; Lee, C. W. Grubbs, R. H.; Org. Lett. 1999, 1,
953.
(6) For another example see: Fu¨rstner, A.; Thiel, O. R.; Ackermann, L.
Org. Lett. 2001, 3, 449-452. We thank Professor Fu¨rstner for informing us
about his results prior to publication.
(7) (a) Marsella, N. J.; Maynard, H. D.; Grubbs, R. H. Angew. Chem., Int.
Ed. Engl. 1997, 36, 1101. (b) Xu, Z.; Johannes, C. W.; Houri, A. F.; La, D.
S.; Cogan, D. A.; Hofilena, G. E.; Hoveyda, A. H. J. Am. Chem. Soc. 1997,
119, 10302. (c) Lee, C. W.; Grubbs, R. H. Org. Lett. 2000, 2, 2145.
10.1021/ja003745d CCC: $20.00 © 2001 American Chemical Society
Published on Web 01/12/2001