Inorganic Chemistry
Article
(10) Pistorio, B. J.; Chang, C. J.; Nocera, D. G. A Phototriggered
Molecular Spring for Aerobic Catalytic Oxidation Reactions. J. Am.
Chem. Soc. 2002, 124 (27), 7884−7885.
and [Fe(HPX-COOH)Cl] as Figures S1−S12 and Table
(11) Yeh, C.-Y.; Chang, C. J.; Nocera, D. G. “Hangman” Porphyrins
for the Assembly of a Model Heme Water Channel. J. Am. Chem. Soc.
2001, 123 (7), 1513−1514.
AUTHOR INFORMATION
Corresponding Authors
ORCID
■
(12) Chang, C. J.; Chng, L. L.; Nocera, D. G. Proton-Coupled O−O
Activation on a Redox Platform Bearing a Hydrogen-Bonding
Scaffold. J. Am. Chem. Soc. 2003, 125 (7), 1866−1876.
(13) Chng, L. L.; Chang, C. J.; Nocera, D. G. Catalytic O−O
Activation Chemistry Mediated by Iron Hangman Porphyrins with a
Wide Range of Proton-Donating Abilities. Org. Lett. 2003, 5 (14),
2421−2424.
(14) Rosenthal, J.; Chng, L. L.; Fried, S. D.; Nocera, D. G.
Stereochemical control of H2O2 dismutation by Hangman porphyrins.
Chem. Commun. 2007, 0 (25), 2642−2644.
Notes
The authors declare no competing financial interest.
(15) McGuire, R., Jr; Dogutan, D. K.; Teets, T. S.; Suntivich, J.;
Shao-Horn, Y.; Nocera, D. G. Oxygen reduction reactivity of
cobalt(ii) hangman porphyrins. Chem. Sci. 2010, 1 (3), 411−414.
(16) Zyska, B.; Schwalbe, M. Synthesis of sterically hindered
xanthene-modified iron corroles with catalase-like activity. Chem.
Commun. 2013, 49 (36), 3799−3801.
(17) Nehrkorn, J.; Martins, B. M.; Holldack, K.; Stoll, S.; Dobbek,
H.; Bittl, R.; Schnegg, A. Zero-field splittings in metHb and metMb
with aquo and fluoro ligands: a FD-FT THz-EPR study. Mol. Phys.
2013, 111 (18−19), 2696−2707.
(18) Stavretis, S. E.; Atanasov, M.; Podlesnyak, A. A.; Hunter, S. C.;
Neese, F.; Xue, Z.-L. Magnetic Transitions in Iron Porphyrin Halides
by Inelastic Neutron Scattering and Ab Initio Studies of Zero-Field
Splittings. Inorg. Chem. 2015, 54 (20), 9790−9801.
(19) Neese, F.; Solomon, E. I. Calculation of Zero-Field Splittings, g-
Values, and the Relativistic Nephelauxetic Effect in Transition Metal
Complexes. Application to High-Spin Ferric Complexes. Inorg. Chem.
1998, 37 (26), 6568−6582.
(20) Neese, F. Calculation of the zero-field splitting tensor on the
basis of hybrid density functional and Hartree-Fock theory. J. Chem.
Phys. 2007, 127 (16), 164112.
(21) Okamoto, T.; Takahashi, H.; Ohmichi, E.; Ohta, H. Force-
detected ESR Measurements in a Terahertz Range up to 0.5 THz and
Application to Hemin. Appl. Magn. Reson. 2017, 48 (5), 435−444.
(22) Okamoto, T.; Ohmichi, E.; Okubo, S.; Ohta, H. Precise
Determination of Zero-Field Splitting Parameters of Hemin by High-
Field and High-Frequency Electron Paramagnetic Resonance. J. Phys.
Soc. Jpn. 2018, 87 (1), 013702.
(23) Nehrkorn, J.; Telser, J.; Holldack, K.; Stoll, S.; Schnegg, A.
Simulating Frequency-Domain Electron Paramagnetic Resonance:
Bridging the Gap between Experiment and Magnetic Parameters for
High-Spin Transition-Metal Ion Complexes. J. Phys. Chem. B 2015,
119 (43), 13816−13824.
(24) Champion, P. M.; Sievers, A. J. Far infrared magnetic resonance
in FeSiF6·6H2O and Fe(SPh)42−. J. Chem. Phys. 1977, 66 (5),
1819−1825.
(25) Brackett, G. C.; Richards, P. L.; Wickman, H. H. Far infrared
spectra of several Fe(III) complexes with spin S = 3/2. Chem. Phys.
Lett. 1970, 6 (2), 75−78.
(26) Brackett, G. C.; Richards, P. L.; Caughey, W. S. Far-Infrared
Magnetic Resonance in Fe(III) and Mn(III) Porphyrins, Myoglobin,
Hemoglobin, Ferrichrome A, and Fe(III) Dithiocarbamates. J. Chem.
Phys. 1971, 54 (10), 4383−4401.
(27) Champion, P. M.; Sievers, A. J. Far infrared magnetic resonance
of deoxyhemoglobin and deoxymyoglobin. J. Chem. Phys. 1980, 72
(3), 1569−1582.
(28) Dolphin, D. H.; Sams, J. R.; Tsin, T. B.; Wong, K. L.
Moessbauer-Zeeman spectra of some octaethylporphyrinato- and
tetraphenylporphinatoiron(III) complexes. J. Am. Chem. Soc. 1978,
100 (6), 1711−1718.
(29) Hunter, S. C.; Podlesnyak, A. A.; Xue, Z.-L. Magnetic
Excitations in Metalloporphyrins by Inelastic Neutron Scattering:
ACKNOWLEDGMENTS
■
The authors are grateful to Dr. Samuel M. Greer (National
High Magnetic Field Laboratory, FL, USA), Dr. Karsten
Holldack for experimental assistance, Dr. Steffen Meyer for
productive discussions on iron chemistry (the latter are
affiliated with Helmholtz-Zentrum Berlin, Germany), and
Prof. Dr. Katharina J. Franke (Freie Universitat Berlin,
Germany) for inspiring the work on [Fe(OEP)Cl]. J.N. thanks
̈
̈
Prof. Dr. Carmen Herrmann (Universitat Hamburg, Germany)
for support and discussions. The National High Magnetic Field
Laboratory is supported by the National Science Foundation
through NSF/DMR-1157490 and the State of Florida.
Funding from the Deutsche Forschungsgemeinschaft through
SPP 1601 and a research fellowship to J.N. (grant no. NE
2064/1-1) is gratefully acknowledged. S.A.B. gratefully
acknowledges a fellowship from the Alexander von Humboldt
Foundation.
REFERENCES
■
(1) Rosenthal, J.; Nocera, D. G. Role of Proton-Coupled Electron
Transfer in O−O Bond Activation. Acc. Chem. Res. 2007, 40 (7),
543−553.
(2) Rao, H.; Schmidt, L. C.; Bonin, J.; Robert, M. Visible-light-
driven methane formation from CO2 with a molecular iron catalyst.
Nature 2017, 548, 74−77.
(3) Collman, J. P.; Fu, L.; Herrmann, P. C.; Zhang, X. A Functional
Model Related to Cytochrome c Oxidase and Its Electrocatalytic
Four-Electron Reduction of O2. Science 1997, 275 (5302), 949.
́
(4) Collman, J. P.; Devaraj, N. K.; Decreau, R. A.; Yang, Y.; Yan, Y.-
L.; Ebina, W.; Eberspacher, T. A.; Chidsey, C. E. D. A Cytochrome c
Oxidase Model Catalyzes Oxygen to Water Reduction Under Rate-
Limiting Electron Flux. Science 2007, 315 (5818), 1565.
(5) Collman, J. P.; Wagenknecht, P. S.; Hutchison, J. E. Molecular
Catalysts for Multielectron Redox Reactions of Small Molecules: The
“Cofacial Metallodiporphyrin” Approach. Angew. Chem., Int. Ed. Engl.
1994, 33 (15−16), 1537−1554.
(6) Lang, P.; Schwalbe, M. Pacman Compounds: From Energy
Transfer to Cooperative Catalysis. Chem. - Eur. J. 2017, 23 (69),
17398−17412.
(7) Chang, C. J.; Deng, Y.; Heyduk, A. F.; Chang, C. K.; Nocera, D.
G. Xanthene-Bridged Cofacial Bisporphyrins. Inorg. Chem. 2000, 39
(5), 959−966.
(8) Deng, Y.; Chang, C. J.; Nocera, D. G. Direct Observation of the
“Pac-Man” Effect from Dibenzofuran-Bridged Cofacial Bisporphyrins.
J. Am. Chem. Soc. 2000, 122 (2), 410−411.
(9) Chang, C. J.; Baker, E. A.; Pistorio, B. J.; Deng, Y.; Loh, Z.-H.;
Miller, S. E.; Carpenter, S. D.; Nocera, D. G. Structural,
Spectroscopic, and Reactivity Comparison of Xanthene- and
Dibenzofuran-Bridged Cofacial Bisporphyrins. Inorg. Chem. 2002, 41
(12), 3102−3109.
I
Inorg. Chem. XXXX, XXX, XXX−XXX