10.1002/cmdc.201800158
ChemMedChem
COMMUNICATION
2010, 103, 831-836; c) L. Pawig, C. Klasen, C. Weber, J. Bernhagen, H.
Noels, Front. Immunol. 2015, 6, 429. d) N. Kindt, F. Journe, G. Laurent,
S. Saussez, Oncol. Lett. 2016, 12, 2247-2253. e) C. C. G. Nobre, J. M.
Galvão de Araújo, T. A. A. M. Fernandes, R. N. O. Cobucci, D. C. F.
Lanza, V. S. Andrade, J. V. Fernandes, Pathol. Oncol. Res. 2017, 23,
235-244.
a significant reduction (55.2 ± 4.8 μg/mL). Given these results, it
was surprising to find in the biphenyl series that the solubility of
8w is only 1.7 ± 0.7 μg/mL. However, this is readily remedied by
attachment of solvent-exposed, solubilizing groups[11b] as in 8x
(34.6 ± 4.8 μg/mL, or 67 μM).
In order to facilitate further study of the in vitro and in vivo
biology of MIF, series of potent MIF tautomerase inhibitors have
been pursued. Starting from a 113-μM docking hit, a novel series,
which features a pyrazole instead of a phenol, was optimized to
yield compounds with Ki values as low as 60-70 nM. The
optimization was greatly facilitated by molecular modeling and the
ability to obtain multiple high-resolution crystal structures, which
guided the effective selection and placement of substituents.
Recognition of the potential benefit of addition of a fluorine in the
pyrazole ring also provided an essential boost along with a
synthetic challenge. Current efforts are being directed at testing
the influence of the inhibitors on suppressing MIF-stimulated cell
proliferation and at preclinical studies for off-target activity and
metabolism.
[4]
[5]
[6]
C. O’Reilly, M. Doroudian, L. Mawhinney, S. C. Donnelly, Med. Res. Rev.
2016, 36, 440-460.
S. N. Babu, G. Chetal, S. Kumar Asian Pac. J. Cancer Prev. 2012, 13,
1737-1744.
a) M. Orita, S. Yamamoto, N. Katayama, S. Fujita, Curr. Pharm. Design
2002, 8, 1297-1317; b) J. Garai, T Lóránd, Curr. Med. Chem. 2009, 16,
1091-1114; c) J. Bloom, S. Sun, Y. Al-Abed, Expert Opin. Ther. Targets
2016, 20, 1463-1475.
[7]
[8]
a) P. D. Senter, Y. Al-Abed, C. N. Metz, F. Benigni, R. A. Mitchell, J.
Chesney, J. Han, C. G. Gartner, S. D. Nelson, G. J. Todaro, R. Bucala,
Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 144-149; b) A. A. Hare, L. Leng,
S. Gandavadi, X. Du, Z. Cournia, R. Bucala, W. L. Jorgensen, Bioorg.
Med. Chem. Lett. 2010, 20, 5811-5814.
a) Z. Cournia, L. Leng, S. Gandavadi, X. Du, R. Bucala, W. L. Jorgensen,
J. Med. Chem. 2009, 52, 416-424; b) H. Ouertatani-Sakouhi, F. El-Turk,
B. Fauvet, M.-K. Cho, D. P. Karpinar, D. Le Roy, M. Dewor, T. Roger, J.
Bernhagen, T. Calandra, M. Zweckstetter, H. A. Lashuel, J. Biol. Chem.
2010, 285, 26581-26598; c) L. Xu, Y. Zhang, L. Zheng, C. Qiao, Y. Li, D.
Li, X. Zhen, T. Hou, T. J. Med. Chem. 2014, 57, 3737-3745 ; d) L.-T. Tsai,
T.-H. Lin, J. Biomol. Screen. 2014, 19, 1116-1123 ; e) M. C. Zapatero, P.
Pérez, M. J. Vázquez, G. Colmenarejo, M. de los Frailes, F. Ramón, J.
Biomol. Screen. 2016, 21, 1-13.
Experimental Section
Recombinant expression and purification of human MIF was carried out as
previously reported.[11] Crystallization of MIF in complex with 5 and 8g was
achieved by soaking with apo-MIF crystals, while for the complexes of 8a
and 8n, co-crystallization was performed via sitting drop vapor diffusion at
20 °C. The structures were determined in-house using a Rigaku 007 HF+
diffractometer and Saturn 944+ CCD detector at T = 100 K. The crystal
structures have been deposited in the RSC Protein Data Bank with IDs
6CBG (5), 6CBF (8a), 6CB5 (8g), and 6CBH (8n). The Supporting
Information contains the synthetic procedures, NMR and HRMS spectral
data for all new compounds, and details for the crystallography and
solubility measurements (72 pages).
[9]
J. A. Cisneros, M. J. Robertson, M. Valhondo, W. L. Jorgensen, Bioorg.
Med. Chem. Lett. 2016, 26, 2764-2767.
[10] A. Billich, P. Lehr, H. Gstach, PCT/EP2005/011233, WO2006/045505 A1,
2006.
[11] a) P. Dziedzic, J. A. Cisneros, M. J. Robertson, A. A. Hare, N. E. Danford,
R. H. Baxter, W. L. Jorgensen, W. L. J. Am. Chem. Soc. 2015, 137, 2996-
3003; b) J. A. Cisneros, M. J. Robertson, B. Q. Mercado, W. L. Jorgensen,
ACS Med. Chem. Lett. 2017, 8, 124-127.
[12] J. A. Cisneros, M. J. Robertson, M. Valhondo, W. L. Jorgensen, J. Am.
Chem. Soc. 2016, 138, 8630-8638.
[13] Y. Al-Abed, D. Dabideen, B. Aljabari, A. Valster, D. Messmer, M. Ochani,
M. Tanovic, K. Ochani, M. Bacher, F. Nicoletti, C. Metz, V. A. Pavlov, E.
J. Miller, K. J. Tracey, J. Biol. Chem. 2005, 280, 36541-36544.
[14] a) B. Wu, K. Kulkarni, S. Basu, S. Zhang, M. Hu, J. Pharm. Sci. 2011,
100, 3655-3681; b) A. Rowland, J. O. Miners, P. I. Mackenzie, Int. J.
Biochem. Cell Biol. 2011, 45, 1121-1132.
Acknowledgements
Gratitude is expressed to the U. S. National Institutes of Health
(GM32136) for research support, to the National Science
Foundation for a fellowship for MJR (DGE-1122492), and to Drs.
Thomas Steitz, Michael Strickler, and Yong Xiong for assistance at
the Yale Richards Center.
[15] a] E. Chapman, M. D. Best, S. R. Hanson, C.-H. Wong, Angew. Chem.
Int. Ed. 2004, 43, 3526-3548; b) C. Rakers, F. Schumacher, W. Meinl, H.
Glatt, B. Kleuser, G. Wolber, J. Biol. Chem. 2016, 291, 58-71.
[16] a) J. L. Wright, T. F. Gregory, S. R. Kesten, P. A. Boxer, K. A. Serpa, L.
T. Meltzer, L. D. Wise, J. Med. Chem. 2000, 43, 3408-3419; b) R. R.
Wilkening, R. W. Ratcliffe, A. K. Fried, D. Meng, W. Sun, L. Colwell, S,
Lambert, M. Greenlee, S. Nilsson, A. Thorsell, M. Mojena, C. Tudela, K.
Frisch, W. Chan, E. T. Birzin, S. P. Rohrer, M. L. Hammond, Bioorg. Med.
Chem. Lett. 2006, 16, 3896-3901.
Conflict of interest
The authors declare no conflict of interest.
[17] a) H. Gohlke, G. Klebe, Angew. Chem. Int. Ed. Engl. 2002, 41, 2644;
b) W. L. Jorgensen, Acc. Chem. Res. 2009, 42, 724-733; c) P. Schneider,
G. Schneider, J. Med. Chem. 2016, 59, 4077-4086; d) W. L. Jorgensen,
Bioorg. Med. Chem. 2016, 24, 4768-4778.
Keywords: MIF inhibitors • pyrazole • phenol bioisostere •
tautomerase • protein crystallography
[18] E. Baka, J. E. A. Comer, K. Takács-Novák, J. Pharm. Biomed. Anal. 2008,
46, 335-341.
[1]
a) E. Lolis, R. Bucala, Expert Opin. Ther. Targets 2003, 7, 153-164. b) J.
Garai, T. Lóránd, Curr. Med. Chem. 2009, 16, 1091-1114. c) D. Greven,
L. Leng, R. Bucala, Expert Opin. Ther. Targets 2010, 14, 253-264; d) Y.
Asare, M. Schmitt, J. Bernhagen, Thromb. Haemost. 2013, 109, 391-398.
a) N. E. Savaskan, G. Fingerle-Rowson, M. Buchfelder, I. Y. Eyüpoglu,
Int. J. Cell Biol. 2012, 2012, 139573. b) M. F. Leyton-Jaimes, J. Kahn, A.
Israelson, Exp. Neurol. 2018, 301B, 83-91.
[19] M. Jarończyk, J. C. Dobrowolski, A. P. Maruzek, J. Mol. Struct.
(Theochem) 2004, 673, 17-28.
[20] a) S. A. Hitchcock, L. D. Pennington, J. Med. Chem. 2006, 49, 7559-
7583; b) J. M. Meinig, S. J. Ferrara, T. Banerji, T. Banerji, H. S. Sanford-
Crane, D. Bourdette, T. S. Scanlan, ACS Chem. Neurosci. 2017, 8, 2468-
2476.
[2]
[3]
a) C. Bifulco, K. McDaniel, L. Leng, R. Bucala, Curr. Pharm. Design 2008,
14, 3790-3801. b) H. Conroy, L. Mawhinney, S. C. Donnelly, Q. J. Med.
[21] W. L. Jorgensen, E. M. Duffy, Adv. Drug Deliv. Rev. 2002, 54, 355-366.
This article is protected by copyright. All rights reserved.