H. Ishibashi et al. / Tetrahedron Letters 42 (2001) 931–933
933
This compound, without purification, was then heated
in MeOH containing 10% aq. NaOH to give the target
compound 4 in 45% yield (based on 18). Formation of
4 from 19 can be explained by a three-step sequence of
the reactions involving alkaline hydrolysis of trifl-
uoroacetate 19, intramolecular aldol condensation of
the resulting aldehyde 20, and auto-oxidation of the
six-membered unsaturated lactam 21. Although it is not
clear presently whether the compound 4 was formed
from 21 or from its regioisomer with respect to the
double bond, it should be noted that no specific oxidiz-
ing agent such as DDQ was required in the final step.
4. For total syntheses of MPK and related compounds,
see: (a) Kametani, T.; Takeda, H.; Nemoto, H.;
Fukumoto, K. J. Chem. Soc., Perkin Trans. 1 1975, 1825;
(b) Comins, D. L.; Saha, J. K. J. Org. Chem. 1996, 61,
9623; (c) Josien, H.; Curran, D. P. Tetrahedron 1997, 53,
8881; (d) Boger, D. L.; Hong, J. J. Am. Chem. Soc. 1998,
120, 1218; (e) Yadav, J. S.; Sarkar, S.; Chandrasekhar, S.
Tetrahedron 1999, 55, 5449; (f) Toyota, M.; Komori, C.;
Ihara, M. Heterocycles 2000, 52, 591; (g) Mekouar, K.;
Ge´nisson, Y.; Leue, S.; Green, A. E. J. Org. Chem. 2000,
65, 5212. See also Ref. 1.
O
O
i
ii
iv
N
v
N
12d
N
H
CF3COO
PhS
PhS
O
O
PhS
Et
Et
(O)n
19
16
17: n = 0
iii
18: n = 1
O
O
O
N
N
N
[O]
H
O
O
O
O
Et
Et
Et
20
4
21
i) K2CO3, MeOH-H2O (15:1), room temp.; ii) 14, EDC, DMAP, HOBt, CH2Cl2, room temp.; iii) MCPBA, CH2Cl2,
0 ˚C; iv) (CF3CO)2O, CH2Cl2, 0 ˚C; v) 10% NaOH, MeOH, reflux.
Thus, we demonstrated the feasibility of using sulfur-
directed 5-exo selective aryl radical cyclization of o-bro-
5. Ishibashi, H.; Kato, I.; Takeda, Y.; Kogure, M.; Tamura,
O. Chem. Commun. 2000, 1527.
mobenzyl enamides 10 for the synthesis of a model
6. 1H NMR for 9 (diagnostic data only): l 4.29 (d, J=6.3
compound 4 of MPK. An application of this method to
Hz, 2 H, ArCH2), 5.43 (dt, J=13.2, 6.6 Hz, 1 H, NH).
7. For other sulfur-directed exo selective radical cycliza-
the synthesis of MPK is now under investigation, and
the results will be reported in due course.
tions, see: (a) Ishibashi, H.; Kameoka, C.; Iriyama, H.;
Kodama, K.; Sato, T.; Ikeda, M. J. Org. Chem. 1995, 60,
1276; (b) Ishibashi, H.; Kawanami, H.; Nakagawa, H.;
Ikeda, M. J. Chem. Soc., Perkin Trans. 1 1997, 2291; (c)
References
Ishibashi, H.; Kobayashi, T.; Takamasu, D. Synlett 1999,
1286.
8. Carboxylic acid 14 was prepared by alkylation of methyl
1. (a) Pendrak, I.; Barney, S.; Wittrock, R.; Lambert, D.
M.; Kingsbury, W. D. J. Org. Chem. 1994, 59, 2623; (b)
Pendrak, I.; Wittrock, R.; Kingsbury, W. D. J. Org.
Chem. 1995, 60, 2912.
3-oxopentanoate with methyl 2-bromopropionate
(K2CO3, Bu4NI, acetone, 77%) followed by decar-
boxylative hydrolysis (AcOH, conc. HCl, 89%). Acid
chloride 13 was prepared from 14 [(COCl)2, pyridine,
benzene].
2. For recent works on the synthesis of camptothecin, see:
(a) Tagami, K.; Nakazawa, N.; Sano, S.; Nagao, Y.
Heterocycles 2000, 53, 771; (b) Brown, R. T.; Jianli, L.;
Santos, C. A. M. Tetrahedron Lett. 2000, 41, 859.
3. For transformation of camptothecin to MPK, see: (a)
Kingsbury, W. D. Tetrahedron Lett. 1988, 29, 6847; (b)
Fortunak, J. M. D.; Mastrocola, A. R.; Mellinger, M.;
Wood, J. L. Tetrahedron Lett. 1994, 35, 5763; (c) Das, B.;
Madhusudhan, P. Tetrahedron 1999, 55, 7875; (d) Das,
B.; Madhusudhan, P.; Kashinatham, A. Bioorg. Med.
Chem. Lett. 1998, 8, 1403.
9. It has been reported that catalytic hydrogenation of
sulfur-containing compounds such as allyl phenyl sulfide
is effected with a Wilkinson catalyst in benzene. See:
Birch, A. J.; Walker, K. A. M. Tetrahedron Lett. 1967,
1935.
10. Alkaline hydrolysis of 12b,c required rather drastic condi-
tions and long reaction times.
.
.