M. Sabat, C. R. Johnson / Tetrahedron Letters 42 (2001) 1209–1212
1211
ment of the resultant oxazolidinone Na salt with LiI
afforded the desired product in high yield.
9. Tanner, D.; Hagberg, L.; Poulsen, A. Tetrahedron 1999,
55, 1427.
10. (a) For a review of metathesis reactions including leading
references with respect to compound 4, see: Grubbs,
R. H.; Chang, S. Tetrahedron 1998, 54, 4413; (b) For
a review of metathesis reactions leading to one car-
bon homologues of this ring system, see: Maier, M. E.
Angew. Chem., Int. Ed. 2000, 39, 2073; (c) For construc-
tion of a larger ring variant of 6 using metathesis, see:
Ref. 7(f).
L. Tetrahedron Lett. 2000, 41, 3551; (d) Golubev, A.;
Sewald, N.; Burger, K. Tetrahedron Lett. 1995, 36, 2037;
(e) Rutjes, F. P. J. T.; Veerman, J. J. N.; Meester, W. J.
N.; Hiemstra, H.; Schoemaker, H. E. Eur. J. Org. Chem.
1999, 1127; (f) Esch, P. M.; Boska, I. M.; Hiemstra, H.;
de Boer, R. F.; Speckamp, W. N. Tetrahedron 1991, 47,
4063; (g) Fujita, Y.; Irreverre, F.; Witkop, B. J. Am.
Chem. Soc. 1964, 86, 1844.
4. For isolation of (−)-SS20846A, see: (a) Komoto, T.;
Yano, K.; Ono, J.; Okawa, J.; Nakajima, T. Jpn. Kokai
1986, 35788; (b) Maul, C.; Sattler, I.; Zerlin, M.; Hinze,
C.; Koch, C.; Maier, A.; Grabley, S.; Thiericke, R. J.
Antibiot. 1999, 52, 1124.
11. Ortep drawing of X-ray structures 7 and 8.
5. For synthesis of (−)-SS20846A, see: (a) Yokoyama, H.;
Otaya, K.; Yamaguchi, S.; Hirai, Y. Tetrahedron Lett.
1998, 39, 5971; (b) Takemoto, Y.; Ueda, S.; Takeuchi, J.;
Nakamoto, T.; Iwata, C. Tetrahedron Lett. 1994, 35,
8821; (c) Ripoche, I.; Canet, J.; Aboab, B.; Gelas, J.;
Troin, Y. J. Chem. Soc., Perkin Trans. 1 1998, 3485; (d)
Davis, F. A.; Chao, B.; Fang, T.; Szewczyk, J. M. Org.
Lett. 2000, 2, 1041; (e) Takemoto, Y.; Ueda, S.;
Takeuchi, J.; Baba, Y.; Iwata, C. Chem. Pharm. Bull.
1997, 45, 1906.
6. (a) Sabat, M.; Johnson, C. R. Org. Lett. 2000, 8, 1089;
(b) Vinylglycinol was synthesized from 2-butene-1,4-diol
and made enantiopure utilizing a Pseudomonas cepacia
lipase-catalyzed kinetic resolution. Detailed procedures
and other literature sources for this compound are con-
tained in Ref. 6(a).
7. (a) Kimura, M.; Tanaka, S.; Tamaru, Y. J. Org. Chem.
1995, 60, 3764; (b) Kimura, M.; Fugami, K.; Tanaka, S.;
Tamaru, Y. Tetrahedron Lett. 1991, 32, 6359; (c) Ohfune,
Y.; Kurokawa, N. Tetrahedron Lett. 1984, 25, 1071; (d)
McKillop, A.; Taylor, R. J. K.; Watson, R. J.; Lewis, N.
Synthesis 1994, 31; (e) Yoo, S.; Lee, S. J. Org. Chem.
1994, 59, 6968; (f) Winkler, J. D.; Stelmach, J. E.; Axten,
J. Tetrahedron Lett. 1996, 37, 4317; (g) Horikawa, M.;
Hashimoto, K.; Shirahama, H. Tetrahedron Lett. 1993,
34, 331; (h) Yamano, K.; Shirahama, H. Chem. Lett.
1993, 21; (i) Kimura, M.; Fugami, K.; Tanaka, S.;
Tamaru, Y. J. Org. Chem. 1992, 57, 6377; (j) Ishizuka,
T.; Kimura, K.; Ishibuchi, S.; Kunieda, T. Chem. Lett.
1992, 991.
12. (a) Boger, D. L.; Hu¨ter, O.; Kapiamba, M.; Minsheng, Z.
J. Am. Chem. Soc. 1995, 117, 11839; (b) Chen, X.; Millar,
J. G. Synthesis 2000, 113.
13. Naruse, M.; Aoyagi, S.; Kibayashi, C. J. Org. Chem.
1994, 59, 1361.
14. Craig, D.; Fischer, D. A.; Kemal, O.; Marsh, A.; Pless-
ner, T.; Slawin, A. M. Z.; Williams, D. J. Tetrahedron
1998, 47, 3095.
15. Selected optical and spectral data: (S)-6 as a clear oil;
[h]2D4 −123.7 (c 1.48, CHCl3); 1H NMR (CDCl3) l 5.91
(ddd, 1H, J=10.5, 10.5, 5.4 Hz), 5.63 (ddd, 1H J=11.7,
10.5, 1.2 Hz), 4.44 (tapp, 1H, J=8.4 Hz), 4.36 (m, 1H),
3.90 (dd, 1H, J=14.1, 7.8 Hz), 3.09–2.99 (m, 2H),
2.42–2.27 (m, 1H), 2.04–1.96 (m, 1H); 13C NMR
(CDCl3) l 158.02, 127.95, 125.89, 68.10, 52.71, 38.30,
23.64. HRMS (EI) calcd for C7H9NO2 139.0633 (M+),
found 139.0632; ent-7 as white crystals; mp 138–140°C;
1
[h]2D1 +50.7 (c 1.1, CDCl3); H NMR (CDCl3) l 8.02 (d,
2H, J=7.2 Hz), 7.62 (t, 1H, J=6.4 Hz), 7.48 (t, 2H,
J=7.2 Hz), 5.61 (dt, 1H, J=3.2, 5.6, Hz), 4.52 (bs, 1H),
4.44 (t, 1H, J=8.8 Hz), 4.19 (dd, 1H, J=9.2, 4.8 Hz),
3.95 (dd, 1H, J=14.0, 6.8 Hz), 3.68 (unresolved ddd, 1H,
J=16.0, 8.0, 4.8 Hz), 3.34 (ddd, 1H, J=30.0, 13.2, 3.2
Hz), 2.78 (m, 1H), 1.96 (dt app, 1H, J=14.4, 3.2 Hz); 13C
NMR (CDCl3) l 165.05, 134.05, 129.88, 129.34, 128.95,
72.14, 69.48, 52.74, 36.47, 31.85, 23.91. HRMS (EI) calcd
for C14H14NO4 260.0922 (M+−I), found 260.0923; 11 as a
1
clear oil; [h]2D3 +22.2 (c 0.2, CDCl3); H NMR (CDCl3) l
8.40–6.80 (bs, 1H), 5.02 & 4.83 (bs overlapping bm, 1H),
4.69 (s, 2H), 4.10 & 3.99 (bd overlapping bd, 1H, J=
12.5, 13.0 Hz), 3.60 (btapp, 1H), 3.37 (s, 3H), 3.07–2.96
(bt overlapping bt, 1H, J=12.0 Hz), 2.52 (bt, 1H, J=
11.0 Hz), 2.16 (s, 1H), 2.09 (bs, 1H), 1.94 (m, 1H), 1.66
(m, 1H), 1.46 & 1.43 (overlapping s, 9H); 13C NMR
(CDCl3) l 174.47b, 156.23, 94.86, 71.29, 55.54, 54.53b,
53.57b, 40.81b, 40.02b, 32.94b, 31.86b, 29.93, 28.52.
HRMS (EI) calcd for C9H15NO6 233.0899 (M+−C4H8),
8. The deprotonation of 4 and alkylation with 4-bromo-1-
butene proved extremely problematic. Typically when
NaH was used as base a 40% yield of 5 or ent-5 was
achieved with a majority of the starting material recov-
ered. The use of n-BuLi as base afforded 5 in only 20%
yield. Attempts to utilize 4-iodo-1-butene or the triflate of
3-hydroxy-1-butene9 proved fruitless. Gratifying
ly, treat-
.