reactions, regardless of the presence of the 3-galloyl moiety.
However, the 3-galloyl moiety may enhance the antioxidant
potential of EGCG.9
The synthesis of EGCG has not yet been described in the
literature. We have developed a versatile chemical synthesis
of EGCG and other tea catechins that allows us to vary
different portions of the EGCG molecule to study the
structure-function relationship of EGCG. This synthesis
affords the 2,3-cis (epicatechin)10 as well as the 2,3-trans
(catechin) racemic analogues of EGCG and is easily ame-
nable to chiral synthesis of 2â,3â-cis EGCG analogues,
which have the same configuration as the natural product
(-)-EGCG. An enantioselective synthesis of the permethyl-
aryl ether analogues of epicatechin has been reported by
Rensburg et al.;11 however, neither the choice of starting
synthons nor the yields of the epicatechin are very practical
for the synthesis of epigallocatechins or analogues for a
structure-function study of EGCG action.
Figure 1. Structures of the four major catechins from green tea.
In this letter, we describe the synthesis of a D-ring
analogue of EGCG using our synthesis approach (Scheme
1). With the appropriate choice of starting materials, this
synthesis can be used to make A, B, and/or D-ring analogues
of EGCG.
breast, lung, skin, prostate, and colon cancers.5 There have
been extensive investigations into the possible mechanisms
of cancer prevention by EGCG, and recent efforts in defining
the molecular mechanisms of green tea and EGCG action
have found that EGCG affects several molecular targets and
pathways of carcinogenesis.6 However, there have been no
clear structure-activity studies defining what parts of the
EGCG molecule are important for its anticarcinogenic action.
While many studies have shown that the antitumor activity
of EGCG stems from its exceptional antioxidant potential,7
two recent studies by Valcic et al.8 have shown that the
trihydroxyphenyl B-ring is the principal site of antioxidant
O-Benzyl-protected 3,4,5-trihydroxybenzaldehyde (2) (syn-
thesized by a known method in 87% overall yield from
methyl gallate, 1)12 was condensed with 4′,6′-bis(benzyloxy)-
2′-hydroxyacetophenone (4) in piperidine/EtOH13 to yield
the chalcone 5. The chalcone was cyclized directly to the
3-flavene 6 with NaBH4 in tetrahydrofuran (THF) and EtOH
at 65 °C in a 50% yield.14 This method of chalcone
cyclization directly to the 3-flavene was established in our
laboratory after considerable experimentation because chal-
cone 5 failed to cyclize under several other conditions
reported in the literature.15 This conversion of 2′-hydroxy-
(4) (a) Liao, S.; Umekita, Y.; Guo, J.; Kokontis, J. M.; Hiipakka, R. A.
Cancer Lett. 1995, 96, 239-243. (b) Han, C. Cancer Lett. 1997, 114, 153-
158. (c) Yang, G.-U.; Liao, J.; Kim, K.; Yurkov, E. J.; Yang, C. S.
Carcinogenesis 1998, 19, 611-616. (d) Okabe, S.; Suganuma, M.; Hayashi,
M.; Sueoka, E.; Komori, A.; Fujiki, H. Jpn. J. Cancer Res. 1997, 88, 639-
643. (e) Valcic, S.; Timmermann, B. N.; Alberts, D. S.; Wachter, G. A.;
Krutzsch, M.; Wymer, J.; Guillen, J. M Anticancer Drugs 1996, 7, 461-
468.
(5) (a) Hirose, M.; Mizoguchi, Y.; Yaono, M.; Tanaka, H.; Yamaguchi,
T.; Shirai, T. Cancer Lett. 1997, 112, 141-147. (b) Hiura, A.; Tsutsumi,
M.; Satake, K. Pancreas 1997, 15, 272-277. (c) Shi, S. T.; Wang, Z. Y.;
Smith, T. J.; Hong, J. Y.; Chen, W. F.; Ho, C. T.; Yang, C. S. Cancer Res.
1994, 54, 4641-4647. (d) Yang, C. S.; Yang, G. Y.; Landau, J. M.; Kim,
S.; Liao, J. Exp. Lung Res. 1998, 24, 629-639.
(6) (a) Fujiki, H. J. Cancer Res. Clin. Oncol. 1999, 125, 589-597. (b)
Cao, Y.; Cao, R. Nature 1999, 398, 381. (c) Gupta, S.; Ahmad, N.; Mohan,
R. R.; Husain, M. M.; Mukhtar, H. Cancer Res. 1999, 59, 2115-2120. (d)
Lin, J.-K.; Liang, Y.-C.; Lin-Shiau, S.-Y. Biochem. Pharmacol. 1999, 58,
911-915. (e) Naasani, I.; Seimiya, H.; Tsuruo, T. Biochem. Biophys. Res.
Commun. 1998, 249, 391-396. (f) Ren, F.; Zhang, S.; Mitchell, S. H.;
Butler, R.; Young, C. Y. F. Oncogene 2000, 19, 1924-1932. (g) Mukhtar,
H.; Ahmad, N. Proc. Soc. Exp. Biol. Med. 1999, 220, 234-238. (h) Ahmad,
N.; Feyes, D. K.; Nieminen, A. L.; Agarwal, R.; Mukhtar, H. J. Natl. Cancer.
Inst. 1997, 89, 1881-1886. (i) Lin, Y. L.; Lin, J. K. Mol. Pharmacol. 1997,
52, 465-472. (j) Chan, M. M.; Fong, D.; Ho, C. T.; Huang, H. I. Biochem.
Pharmacol. 1997, 54, 1281-1286. (k) Dong, Z.; Ma, W.; Huang, C.; Yang,
C. S. Cancer Res. 1997, 57, 4414-4419. (l) Steele, V. E.; Kelloff, G. J.;
Balentine, D.; Boone, C. W.; Mehta, R.; Bagheri, D.; Sigman, C. C.; Zhu,
S.; Sharma, S. Carcinogenesis 2000, 21, 63-67. (m) Ahmad, N.; Cheng,
P.; Mukhtar, H. Biochem. Biophys. Res. Commun. 2000, 275, 328-334.
(7) (a) Rice-Evans, C. Proc. Soc. Exp. Biol. Med. 1999, 220, 262-266.
(b) Katiyar, S. K.; Matsui, M. S.; Elmets, C. A.; Mukhtar, H. Photochem.
Photobiol. 1999, 69, 148-153. (c) Serafini, M.; Ghiselli, A.; Ferro-Luzzi,
A. Eur. J. Clin. Nutr. 1996, 50, 28-32. (d) Xu, Y.; Ho, C-T.; Amin, S.
G.; Han, C.; Chung, F.-L. Cancer Res. 1992, 52, 3875-3879.
(8) (a) Valcic, S.; Muders, A.; Jacobsen, N. E.; Leibler, D. C.;
Timmerman, B. N. Chem. Res. Toxicol. 1999, 12, 382-386. (b) Valcic, S.;
Burr, J. A.; Timmerman, B. N.; Liebler, D. C. Chem. Res. Toxicol. 2000,
13, 801-810.
(9) (a) Guo, Q.; Zhao, B.; Shen, S.; Hou, J.; Hu, J.; Xin, W. Biochim.
Biophys. Acta 1999, 1427, 13-23. (b) Kondo, K.; Kurihara, M.; Miyata,
N.; Suzuki, T.; Toyoda, M. Arch. Biochem. Biophys. 1999, 362, 79-86.
(10) Birch, A. J.; Clark-Lewis, J. W.; Robertson, A. V. J. Chem. Soc.
1957, 3586-3594.
(11) (a) Rensburg, H.; Heerden, P. S.; Bezuidenhoudt, B. C. B.; Ferreira,
D. Tetrahedron Lett. 1997, 38, 3089-3092. (b) Rensburg, H.; Heerden, P.
S.; Ferreira, D. J. Chem. Soc., Perkin Trans. 1 1997, 3415-3421.
(12) Ogata, Y.; Tanaka, I.; Ikeda, S.; Harada, K.; Fujimori, T. Japanese
Patent 8455983, 1985; Chem. Abstr. 1985, 104, 68604w.
(13) Tsukayama, M.; Kawamura, Y.; Tamaki, H.; Kubo, T.; Horie, T.
Bull. Chem. Soc. Jpn. 1989, 62, 826-832.
(14) Representative Procedure: The chalcone 5 (1 g, 1.33 mmol) was
dissolved in THF (20 mL) and EtOH (10 mL) at room temperature, and
NaBH4 (51 mg, 1.33 mmol) was added. The solution was heated to a gentle
reflux (65-70 °C) for 16 h, after which TLC (CH2Cl2) indicated no starting
material. The cooled reaction mixture was evaporated to dryness and
dissolved in CH2Cl2. The organic solution was washed with water and brine,
dried (MgSO4), and evaporated to give a crude yellow solid which was
purified via column chromatography using a gradient of 45% to 20%
hexanes in CH2Cl2 to obtain 0.49 g (50% yield) of 6 as an off-white solid.
(15) (a) Bagade, M. B.; Thool, A. W.; Lokhande, P. D.; Ghiya, B. J.
Indian J. Chem. 1991, 30B, 973-975. (b) Iinuma, M.; Tanaka, T.; Matsura,
S. Chem. Pharm. Bull. 1984, 32, 3354-3360. (c) Chaturvedi, R.; Patil, P.
N.; Mulchandani, N. B. Indian J. Chem. 1992, 31B, 340-341. (d) Harwood,
J. M.; Loftus, G. C.; Oxford, A.; Thomson, C. Synth. Commun. 1990, 20,
649-657. (e) Zhao, L.; Zhang, F.; Li, Y. Bull. Soc. Chim. Belg. 1994, 103,
41-42.
844
Org. Lett., Vol. 3, No. 6, 2001