R. E. Looper, R. M. Williams / Tetrahedron Letters 42 (2001) 769–771
Soc. 2000, 122, 5017–5024.
771
1H NMR spectrum for the alkoxy-methine proton. The
stereochemistry of 13 was confirmed by single-crystal
X-ray diffraction (Fig. 1). Presumably severe eclipsing
interactions in the regioisomeric exo-transition state B‡
disfavor the formation of the tricyclic ring system in 14.
7. (a) Heintzelman, G. R.; Parvez, M.; Weinreb, S. M.
Synlett 1993, 8, 551–552. (b) Snider, B. B.; Harvey, T. C.
Tetrahedron Lett. 1995, 36, 4587–4590. (c) Heintzelman,
G. R.; Weinreb, S. M. J. Org. Chem. 1996, 61, 4594–
4599. (d) Snider, B. B.; Xie, C. Tetrahedron Lett. 1998,
39, 7021–7024. (e) McAlpine, I. J.; Armstrong, R. W.
Tetrahedron Lett. 2000, 41, 1849–1853. (f) Keen, S. P.;
Weinreb, S. M. Tetrahedron Lett. 2000, 41, 4307–4310.
(g) Djung, J. F.; Hart, D. J.; Young, E. R. R. J. Org.
Chem. 2000, 65, 5668–5676.
Hydrogenolysis of 13 in the presence of methanol led
directly to the ester 15. NO bond cleavage in 13 leads to
a highly strained bicyclic system. The resulting 1,3-diax-
ial disposition of the lactone renders the ensuing trans-
esterification a facile process.
8. (a) For reviews on the 1,3-DC reaction: Gothelf, K. V.;
Jorgenson, K. A. Chem. Rev. 1998, 863–909. (b) Con-
falone, P. N.; Huie, E. M. In Organic Reactions; Kende,
A. S., Ed.; John Wiley & Sons: New York, 1998; Vol. 36,
pp. 3–173.
9. (a) Tamura, O.; Mita, N.; Kusaka, N.; Suzuki, H.;
Sakamotao, M. Tetrahedron Lett. 1997, 38, 429–432. (b)
Oppolzer, W.; Snowden, R. L.; Bakker, B. H.; Petrzilka,
M. Tetrahedron 1985, 41, 3497–3509. (c) For an applica-
tion to the synthesis of 1,4- and 1,3-piperidinols, see:
Kiguchi, T.; Shirakawa, M.; Honda, R.; Ninomiya, I.;
Naito, T. Tetrahedron 1998, 54, 15589–15606.
In summary, we have found that the use of a-alkoxy-
carbonylnitrones to be an efficient and highly stereose-
lective route to the 4-hydroxy piperidine moiety in the
A-ring of cylindrospermopsin. Current work in our
laboratory is directed toward the enantioselective total
synthesis of cylindrospermopsin utilizing this general
approach.
Acknowledgements
10. (a) Tamura, O.; Gotanda, K.; Terashima, R.; Kikuchi,
M.; Miyawaki, T.; Sakamoto, M. Chem. Commun. 1996,
1861–1862. (b) Baldwin, S. W.; Young, B. G.; McPhail,
A. T. Tetrahedron Lett. 1998, 39, 6819–6822.
Financial support from the National Science Founda-
tion
(Grant
cCHE
9731947)
is
gratefully
acknowledged.
11. Martin, S. F.; Josey, J. A.; Wong, Y.; Dean, D. W. J.
Org. Chem. 1994, 59, 4805–4820.
References
12. (a) Kazmaier, U. Angew. Chem., Int. Ed. Engl. 1994, 33,
998–999. (b) Krebs, A.; Kazmaier, U. Tetrahedron Lett.
1996, 37, 7945–7946. Kazmaier, U.; Maier, S. J. Org.
Chem. 1999, 64, 4574–4575 and references cited therein.
For an analogous procedure, see: Souer, A. J.; Ellman, J.
A. J. Org. Chem. 2000, 65, 1222–1224.
13. Optically active crotyl glycine derivatives have previously
been prepared by (a) Scho¨llkopf’s method: Guillerm, D.;
Guillerm, G. Tetrahedron Lett. 1992, 33, 5047–5050 and
(b) resolution of the N-acetyl derivative: Chenault, H. K.;
Dahmer, J.; Whitesides, G. M. J. Am. Chem. Soc. 1989,
111, 6354–6364.
1. (a) Ohtani, I.; Moore, R. E.; Runnegar, M. T. C. J. Am.
Chem. Soc. 1992, 114, 7941–7942. (b) Banker, R.;
Carmeli, S.; Hadas, O.; Teltsch, B.; Porat, R.; Sukenik,
A. J. Phycol. 1997, 33, 613–616. (c) Harada, K.; Ohtani,
I.; Iwamoto, K.; Suzuki, M.; Wanatabe, M. F.;
Wanatabe, M.; Terao, K. Toxicon 1994, 32, 73–84.
2. (a) Banker, R.; Teltsch, B.; Sukenik, A.; Carmeli, S. J.
Nat. Prod. 2000, 63, 387–389. (b) Norris, R. L.;
Eaglesham, G. K.; Pierens, G.; Shaw, G. R.; Smith, M.
J.; Chiswell, R. K.; Seawright, A.; Moore, M. R. Environ.
Toxicol. 1999, 14, 163–165.
14. (a) Williams, R. M.; Im, M.-N. J. Am. Chem. Soc. 1991,
113, 9276–9286. (b) Williams, R. M. Aldrichimica Acta
1992, 25, 11–25. (c) Williams, R. M. In Advances in
Asymmetric Synthesis; Hassner, A., Ed.; JAI Press, 1995;
Vol. 1, pp. 45–94. (d) Lactone 11 and the corresponding
antipode are commercially available from Aldrich Chemi-
cal Co.; 11: catalog c33-184–8; the antipode of 11 is
catalog c33,181–3.
3. Ohtani, I.; Moore, R. E.; Runnegar, M. T. Tennen Yuki
Kagobutsu Toronakai Koen Yoshishu, 34th ed. 1992; pp.
79–86.
4. (a) Eaglesham, G. K.; Norris, R. L.; Shaw, G.; Smith,
M.; Chiswell, R. K.; Davis, B. C.; Neville, G. R.; Sea-
wright, A.; Moore, M. R. Environ. Toxicol. 1999, 14,
151–154. (b) Jochimson, E. M.; Charmichael, W. W.; An,
J. S.; Cardo, D. M.; Cookson, S. T.; Holmes, C. E. M.;
Antunes, M. B.; Fihlo, D.; Lyra, T. M.; Barreto, V. S. T.;
Azevedo, S. M. F. O.; Jarvis, W. R. New Engl. J. Med.
1998, 338(13) 873–878.
5. (a) Runnegar, M. T.; Kong, S. M.; Zhong, Y. Z.; Ge, J.
L.; Lu, S. C. Biochem. Biophys. Res. Commun. 1994, 201,
235. (b) Runnegar, M. T.; Kong, S. M.; Zhong, Y. Z.;
Lu, S. C. Biochem. Pharm. 1995, 49, 219.
15. The N-Boc amino alcohol 7 was repeatedly accompanied
by 10–15% of the free amino alcohol and <10% of the
corresponding aldehyde.
16. Evans, E. F.; Lewis, N. J.; Kapfer, I.; Macdonald, G.;
Taylor, R. J. K. Synth. Commun. 1997, 27, 1819.
17. Dellaria, J. F.; Santasiero, B. D. J. Org. Chem. 1989, 54,
3916–3926.
18. Ajac, W. W.; Walters, T. R.; Darcy, M. G. J. Org. Chem.
1988, 53, 5856–5960.
6. Xie, C.; Runnegar, M. T. C.; Snider, B. B. J. Am. Chem.
.