1332
X. YANG AND L. WU
6-Chloro-3-methyl-2H-1,4-benzothiazine (3l): IR (KBr) ν: 2986, 2922, 1655, 1472,
1
1369, 766, 741 cm−1; H NMR (400 MHz, CDCl3): 7.55–6.87 (m, 3H, Ar), 2.75 (s, 2H,
CH2), 2.09 (s, 3H, CH3); Anal. Calcd. for C9H8ClNS: C 54.68, H 4.08, N 7.09, S 16.22;
Found: C 54.72, H 4.00, N 7.13, S 16.25.
6- Chloro-3-phenyl-2H-1,4- benzothiazine (3m): IR (KBr) ν: 2932, 1649, 1477,
767, 738 cm−1; 1H NMR (400 MHz, CDCl3): 7.49–6.82 (m, 8H, Ar), 3.82 (s, 2H, CH2);
Anal. Calcd. for C14H10ClNS: C 64.73, H 3.88, N 5.39, S 12.34; Found: C 64.82, H 3., 79,
N 5.42, S 12.38.
CONCLUSION
In conclusion, we have demonstrated a mild and highly efficient protocol for the
synthesis of 3-substituted-2H-1,4-benzothiazines by using a novel recyclable bioglycerol-
based carbon catalyst in CH3CN as a reaction medium. The catalyst can be reused after a
simple work-up. Other advantages of this protocol are high yields, short reaction time, easy
work-up, environmental acceptability, and cleaner reaction profiles.
REFERENCES
1. Baruffini, A.; Pagani, G.; Amoretti, L. IIFarmaco. 1967, 22, 528-534.
2. Schiaffella, F.; Guarraci, A.; Fringuelli, R.; Pitzurra, L.; Bistoni, F.; Vecchiarelli, A. Med. Chem.
Res. 1999, 9, 291-305.
3. Del Corona, L.; Signorelli, G.; Pinzetta, A.; Coppi, G. Eur. J. Med. Chem. 1992, 27, 419-423.
4. Matsuoka, H.; Ohi, N.; Mihara, M.; Suzuki, H.; Miyamoto, K.; Maruyama, N.; Tsuji, K.; Kato,
N.; Akimoto, T.; Takeda, Y.; Yano, K.; Kuroki, T. J. Med. Chem. 1997, 40, 105-111.
5. Toshiaki, T.; Matsumoto, J.; Tohma, T.; Kanke, T.; Wada, Y.; Nagao, M.; Inagaki, N.; Nagai, H.;
Zhang, M.; Timmerman, H. Jpn. J. Pharmacol. 2001, 86, 55-64.
6. Inoue, S.; Hasegawa, K.; Wakamatsu, K.; Ito, S. Melanoma Res. 1998, 8, 105-112.
7. Aotsuka, T.; Hosono, H.; Kurihara, T.; Akamura, Y.; Matsui, T.; Kobayashi, F. Chem. Pharm.
Bull. 1994, 42, 1264-1271.
8. Fujita, M.; Ito, S.; Ota, A.; Kato, N.; Yamamoto, K.; Kawashima, Y.; Yamauchi, H.; Iwao, J. J.
Med. Chem. 1990, 33, 1898-1905.
9. Chicara, F.; Rota, G. Synthesis 1977, 876-878.
10. Hori, M.; Kataoka, T.; Shimizu, H.; Ueda, N. Tetrahedron Lett. 1981, 22, 1701-1704.
11. Sabatini, S.; Kaatz, G. W.; Rossolini, G. M.; Brandini, D.; Fravolini, A. J. Med. Chem. 2008, 51,
4321-4330.
12. Finar, I. L.; Monugomery, A. J. J. Chem. Soc. 1961, 367-370.
13. Sauleau, A.; David, M.; Sauleau, J. Synth. Commun. 1998, 28, 4105-4121.
14. Trapani, G.; Latrofa, A.; Reho, A.; Liso, C. J. Heterocycl. Chem. l989, 26, 721-724.
15. Baghernejad, B.; Heravi, M. M.; Oskooie, H. A. Synth.Commun. 2011, 41, 589-593.
16. Zhang, Y.-M.; Zhong, W.-H.; Chen, X.-Y. Chin. J. Chem. 2001, 19, 189-192.
17. Karnakar, K.; Murthy, S. N.; Ramesh, K.; Nageswar, Y. V. D.; Vijai Kumar Reddy, T.; Prabhavathi
Devi, B. L. A.; Prasad, R.B.N. Tetrahedron Lett. 2012, 53, 1968-1973.
18. Prabhavathi Devi, B. L. A.; Gangadhar, K. N.; Sai Prasad, P. S.; Jagannadh, B.; Prasad, R. B. N.
ChemSusChem. 2009, 2, 617-620.
19. Tavakoli-Hoseini, N.; Davoodnia, A. Chin. J. Chem. 2011, 29, 203-206.
20. Xiao, H.; Guo, Y.; Liang, X.; Qi, C. Monatsh. Chem. 2010, 141, 929-932.
21. Hara, M.; Yoshida, T.; Takagaki, A.; Takata, T.; Kondo, J. N.; Hayashi, S.; Domen, K. Angew.
Chem. Int. Ed. 2004, 43, 2955-2958.