Communications
[2] a) K. Harada, I. Ohtani, K. Iwamoto, M. Suzuki, M. F. Wana-
tabe, M. Wanatabe, K. Terao, Toxicon 1994, 32, 73; b) R. Banker,
S. Carmeli, O. Hadas, B. Teltsch, R. Porat, A. Sukenik, J. Phycol.
1997, 33, 613.
[3] R. Banker, B. Teltsch, A. Sukenik, S. Carmeli, J. Nat. Prod. 2000,
63, 387.
[4] a) R. L. Norris, G. K. Eaglesham, G. Pierens, G. R. Shaw, M. J.
Smith, R. K. Chiswell, A. Seawright, M. R. Moore, Environ.
Toxicol. 1999, 14, 163; b) L. Renhui, W. W. Carmichael, S.
Brittain, G. K. Eaglesham, G. R. Shaw, Y. Liu, M. M. Watanabe,
J. Phycol. 2001, 37, 1121.
[5] M. T. Runnegar, C. Xie, B. B. Snider, G. A. Wallace, S. M.
Weinreb, J. Kuhlenkamp, Toxicol. Sci. 2002, 67, 81.
[6] a) M. T. Runnegar, S. Kong, Y. Z. Zhong, J. L. Ge, S. C. Lu,
Biochem. Biophys. Res. Commun. 1994, 201, 235; b) M. T.
Runnegar, S. M. Kong, Y. Z. Zhong, S. C. Lu, Biochem. Phar-
macol. 1995, 49, 219; c) S. M. Froscio, A. R. Humpage, P. C.
Burcham, I. R. Falconer, Environ. Toxicol. 2003, 18, 243; d) for a
review, see: D. J. Griffiths, M. L. Saker, Environ. Toxicol. 2003,
18, 78.
Scheme 4. a) 2,6-Dimethoxypyrimidine-4-carbaldehyde, TBAF(2.0 equiv),
ꢀ158C, THF; b) Pd(OH)2, H2, 5% AcOH/MeOH; c) conc. HCl, reflux, 32% for
16, 29% for 17 (3 steps); d) SO3·pyridine, DMF, MS (3 ꢀ), 59%. DMF=N,N-
dimethylformamide, TBAF=tetra-n-butylammonium fluoride.
[7] a) A. R. Humpage, M. Fenech, P. Thoma, I. R. Falconer, Mutat.
Res. 2000, 472, 155; b) V. Fessard, C. Bernard, Environ. Toxicol.
2003, 18, 353.
Results_status/ResstatC/M000072.html, 2004.
[9] a) G. R. Heintzelman, M. Parvez, S. M. Weinreb, Synlett 1993,
551; b) B. B. Snider, T. C. Harvey, Tetrahedron Lett. 1995, 36,
4587 – 4590; c) G. R. Heintzelman, S. M. Weinreb, J. Org. Chem.
1996, 61, 4594; d) B. B. Snider, C. Xie, Tetrahedron Lett. 1998, 39,
7021; e) J. D. White, J. D. Hansen, Abstracts of Papers 219th
National Meeting of the American Chemical Society (San
Francisco, CA), American Chemical Society, Washington, DC,
2000, ORGN 812; f) I. J. McAlpine, R. W. Armstrong, Tetrahe-
dron Lett. 2000, 41, 1849; g) S. P. Keen, S. M. Weinreb, Tetrahe-
dron Lett. 2000, 41, 4307; h) J. F. Djung, D. J. Hart, E. R. R.
Young, J. Org.Chem. 2000, 65, 5668; i) R. E. Looper, R. M.
Williams Tetrahedron Lett. 2001, 42, 769.
thesis of 2. The other diastereomer in the mixture led to 17,
which is epimeric at C7 with a diastereomer described by
Snider and co-workers (relative configuration not
assigned).[10] It was found that the nitroaldol reaction must
be quenched with acetic acid and the products immediately
subjected to reduction conditions. Isolation of the products
after treatment with TBAF provided ~ 1:1:1:1 mixtures of the
nitroalcohols, thus indicating that the reaction is indeed
highly reversible. At this stage the diastereomeric dimethoxy-
pyrimidines were inseparable. Acidic hydrolysis of the
pyrimidines gave a separable mixture of 16 (32% yield from
15) and 17 (29%).[10,12] In our hands, the sulfonation of the
C12 hydroxy group proved capricious under the conditions
reported in the literature.[10–12] The use of sulfur trioxide/
pyridine complex in DMF with 3- molecular sieves gave 2
reproducibly in 59% yield,[26] along with the corresponding
bis(sulfate) (2:1 ratio by HPLC), as previously observed by
others.[11,12,27]
The asymmetric synthesis of 2 detailed herein represents
the shortest successful route toward this family of natural
products. 7-Epicylindrospermopsin has thus been obtained in
only eighteen steps with few protecting-group manipulations
from commercially available 10. Investigations directed at
controlling the diastereoselectivity of the nitroaldol process to
afford cylindrospermopsin (1) are ongoing and will be
reported in due course. The uracil moiety in 1 and 2 has
been deemed essential for their hepatotoxicity.[28] We believe
that the incorporation of the uracil synthon at a late stage in
the synthesis should render our strategy amenable to the
production of uracil analogues for evaluation of their bio-
logical and hepatotoxic activity.
[10] C. Xie, M. T. C. Runnegar, B. B. Snider, J. Am. Chem. Soc. 2000,
122, 5017.
[11] a) S. M. Weinreb, G. R. Heintzelman, W. K. Fang, S. P. Keen,
G. A. Wallace, J. Am. Chem. Soc. 2001, 123, 8851; b) G. R.
Heintzelman, W. K. Fang, S. P. Keen, G. A. Wallace, S. M.
Weinreb, J. Am. Chem. Soc. 2002, 124, 3939.
[12] J. D. White, J. D. Hansen, J. Am. Chem. Soc. 2002, 124, 4950.
[13] a) R. M. Williams, M.-N. Im, J. Am. Chem. Soc. 1991, 113, 9276;
b) R. M. Williams in Advances in Asymmetric Synthesis, Vol. 1
(Ed.: A. Hassner), JAI, New York, 1995, pp. 45 – 94; c) lactone
10 and its enantiomer are available from Aldrich Chemical Co.:
catalogue numbers C33,184-8 (10) and C33,181-3 (enantiomer of
10); d) for a similar preparation of (R)-allylglycine, see: R. M.
Williams, P. J. Sinclair, D. E. DeMong, Org. Synth. 2003, 80, 31.
[14] T. Kanai, S. Irifune, Y. Ishii, M. Ogawa, Synthesis 1989, 283.
[15] J. F. Dellaria, B. D. Santasiero, J. Org. Chem. 1989, 54, 3916.
[16] T. G. Traylor, A. R. Miksztal, J. Am. Chem. Soc. 1987, 109, 2770.
[17] a) P. N. Confalone, E. M. Huie in Organic Reactions, Vol. 36
(Ed.: A. S. Kende), Wiley, New York, 1998, pp. 3 – 173; b) W.
Oppolzer, R. L. Snowden, B. H. Bakker, M. Petrzilka, Tetrahe-
dron 1985, 41, 3497; c) for an application of chiral a-alkoxycar-
bonyl nitrones, see: O. Tamura, K. Gotanda, R. Terashima, M.
Kikuchi, T. Miyawaki, M. Sakamoto, Chem. Commun. 1996,
1861.
Received: March 5, 2004 [Z54208]
Published Online: May 6, 2004
Keywords: alkaloids · cyanobacteria · cycloaddition · guanidine ·
.
nitroaldol reaction
[18] J. Izdebski, D. Pawlak, Synthesis 1989, 6, 423.
[19] A. De Mico, R. Margarita, L. Parlanti, A. Vescovi, G. Piancatelli,
J. Org. Chem. 1997, 62, 6974.
[1] I. Ohtani, R. E. Moore, M. T. C. Runnegar, J. Am. Chem. Soc.
1992, 114, 7941.
[20] G. M. Brooke, S. Mohammed, M. C. Whiting, Chem. Commun.
1997, 1511.
2932
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 2930 –2933