576
A. Chihab-Eddine et al. / Tetrahedron Letters 42 (2001) 573–576
(c) Koot, W. J.; Hiemstra, H.; Speckamp, W. N. Tetra-
Acknowledgements
hedron: Asymmetry 1993, 4, 1941–1948. (d) Luker, T. I.;
Koot, W. J.; Hiemstra, H.; Speckamp, W. N. J. Org.
Chem. 1998, 63, 220–221.
The financial help rendered by the Scientific Council of
University of Le Havre, is greatly appreciated.
5. Klaver, W. J.; Hiemstra, H.; Speckamp, W. N. J. Am.
Chem. Soc. 1989, 111, 2588–2595.
6. Brie`re, J. F.; Charpentier, P.; Que´guiner, G.; Bour-
guignon, J. Tetrahedron 1997, 53, 2075–2086.
7. Da¨ıch, A.; Decroix, B. J. Heterocycl. Chem. 1991, 28,
1881–1884.
8. A comparable method using oxabicyclic anhydride was
described for the preparation of various chiral
maleimides. The yields reported were low and in all cases
the opened chiral fumaric acid N-substituted
monoamides were recovered; see: Andrus, V.; Fisera, L.
Molecules 1997, 2, 49–53.
9. (a) Clevenger, R. C.; Turnbull, K. D. Synth. Commun.
2000, 30, 1379–1388. (b) Braish, T. F.; Fox, D. E. Synlett
1992, 979–980.
10. This product was obtained by thermal amine–anhydride
condensation in high yield (93%): Polniaszek, R. P.;
Belmont, S. E.; Alvarez, R. J. Org. Chem. 1990, 55,
215–223.
References
1. For reviews see: (a) Speckamp, W. N. Rec. Trav. Chim.
Pays-Bas 1981, 100, 345–354. (b) Speckamp, W. N.;
Hiemstra, H. Tetrahedron 1985, 41, 4367–4416. (c) Hiem-
stra, H.; Speckamp, W. N. In The Alkaloids; Brossi, A.,
Ed.; Academic Press: New York, 1988; Vol. 32, pp.
271–339. (d) Hiemstra, H.; Speckamp, W. N. In Compre-
hensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.;
Pergamon Press: Oxford, 1991; Vol. 2, 1047–1082. (e)
Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000,
56, 3817–3856.
2. (a) Mamouni, S.; Pigeon, P.; Da¨ıch, A.; Decroix, B. J.
Heterocycl. Chem. 1997, 34, 1495–1499. (b) Da¨ıch, A.;
Marchalin, S.; Pigeon, P.; Decroix, B. Tetrahedron Lett.
1998, 39, 9187–9190. (c) Hucher, N.; Da¨ıch, A.; Netchi-
ta¨ılo, P.; Decroix, B. Tetrahedron Lett. 1999, 40, 3363–
3366. (d) Hucher, N.; Da¨ıch, A.; Decroix, B. Org. Lett.
2000, 2, 1201–1204. (e) Hucher, N.; Da¨ıch, A.; Decroix,
B. J. Heterocycl. Chem. 1998, 35, 1477–1483.
3. (a) Frey, D. A.; Duan, C.; Hudlicky, T. Org. Lett. 1999,
1, 2085–2087. (b) Lee, Y. S.; Cho, D. J.; Kim, S. N.;
Choi, J. H.; Park, H. J. Org. Chem. 1999, 64, 9727–9730.
(c) Brodney, M. A.; Padwa, A. J. Org. Chem. 1999, 64,
556–565. (d) Heaney, H.; Taha, M. O. Tetrahedron Lett.
2000, 41, 1993–1996. (e) Schuch, C. M.; Pilli, R. A.
Tetrahedron: Asymmetry 2000, 11, 753–764. (f) Padwa,
A.; Waterson, A. G. J. Org. Chem. 2000, 65, 235–244. (g)
El Ghammarti, S.; Rigo, B.; Mejdi, H.; He´nichart, J. P.;
Couturier, D. J. Heterocycl. Chem. 2000, 37, 143–150.
4. (a) Veenstra, S. J.; Speckamp, W. N. J. Am. Chem. Soc.
1981, 103, 4645–4646. (b) Koot, W. J.; Hiemstra, H.;
Speckamp, W. N. Tetrahedron Lett. 1992, 33, 7969–7972.
11. Chihab-Eddine, A.; Da¨ıch, A.; Jilale, A.; Decroix, B.
Heterocycles 1999, 51, 2907–2914.
12. On the basis of 1H NMR experiments, the exocyclic
olefin was assigned as a s-cis conformation and E
configuration. For comparable attributions, see: reference
11 and references cited therein.
13. (a) For an analogy, see: Barry, J. F.; Wallace, T. W.;
Walshe, N, D. A. Tetrahedron 1995, 51, 12797–12806. (b)
1H NMR spectra of imides 11a–c have shown that 11a
and 11c diastereoisomers consist of 5.2:4.8, while for 11b,
it was 6.0:4.0.
14. Wijnberg, J. B. P. A.; Schoemaker, H. E.; Speckamp, W.
N. Tetrahedron 1978, 34, 179–187.
15. Structure assignments of all compounds reported herein
are based on their IR, 1H and 13C NMR, and GC-MS
spectra as well as by their microanalyses.
.
.