10.1002/adsc.202100226
Advanced Synthesis & Catalysis
diphenylphosphine oxide radical A was generated
from the reaction of Ag(I) and diphenylphosphine
oxide via TS1 (∆G‡ = 21.5 kcal·mol-1).[18] The
transformation of Ag(0) to Ag(I) in the reaction
system depended on the oxidation by oxygen. The
reaction of vinyl azide 70 with diphenylphosphine
oxide radical A gave imine radical 70-1 via TS2 (∆G‡
= 3.7 kcal·mol-1) and TS3 (∆G‡ = 1.1 kcal·mol-1). [19]
Then, imine radical 70-1 was reduced by
diphenylphosphine oxide to generate imine 70-2 and
diphenylphosphine oxide radical A via TS4 (∆G‡ =
12.4 kcal·mol-1). Finally, imine 70-2 was hydrolyzed
to β-ketophosphine oxide 3 via TS5 (∆G‡ = 22.5
[1] a) L. D. Quin, A Guide to Organophosphorus
Chemistry; Wiley Interscience: New York, 2000; b)
V. P. Kukhar, H. R. Hudson, Eds.; Aminophosphonic
and Aminophosphinic Acids: Chemistry and
Biological Activity; John Wiley & Sons: Chichester,
2000; c) D. E. C. Corbridge, Phosphorus: Chemistry,
Biochemistry and Technology, 6th ed.; CRC Press:
London, 2013; d) G. P. Horsman, D. L. Zechel, Chem.
Rev. 2017, 117, 5704-5783.
[2] a) Y. Gao, G. Tang, Y. Zhao, Phosphorus, Sulfur, and
Silicon and the Related Elements, 2017, 192, 589-
596; b) D. Leca, L. Fensterbank, E. Lacôte, M.
Malacria, Chem. Soc. Rev. 2005, 34, 858-865.
[7e,20]
kcal·mol-1) and TS6 (∆G‡ = 28.7 kcal·mol-1).
[3] a) X. Chen, X. Li, X. Chen, L. Qu, J. Chen, K. Sun, Z.
Liu, W. Bi, Y. Xia, H. Wu, Y. Zhao, Chem. Commun.
2015, 51, 3846-3849; b) M. Zhou, M. Chen, Y. Zhou,
K. Yang, J. Su, J. Du, Q. Song, Org. Lett. 2015, 17,
1786-1789; c) P. Zhang, L. Zhang, Y. Gao, J. Xu, H.
Fang, G. Tang, Y. Zhao, Chem. Commun. 2015, 51,
7839-7842; d) N. Yi, R. Wang, H. Zou, W. He, W. Fu,
W. He, J. Org. Chem. 2015, 80, 5023-5029; e) Y.
Zeng, D. Tan, W. Lv, Q. Li, H. Wang, Eur. J. Org.
Chem. 2015, 4335-4339; f) W. Zhong, Q. Zhang, M.
Li, D. Hu, M. Cheng, F. Du, J. Ji, W. Wei, Synth.
Commun. 2016, 46, 1377-1385; g) M. Bu, G. Lu, C.
Cai, Catal. Sci. Technol. 2016, 6, 413-416; h) W.
Zhong, T. Tan, L. Shi, X. Zeng, Synlett. 2018, 29,
1379-1384; i) X. Li, G. Hu, P. Luo, G. Tang, Y. Gao,
P. Xu, Y. Zhao, Adv. Synth. Catal. 2012, 354, 2427-
2432.
[4] a) Y. Chen, W. Duan, J. Am. Chem. Soc. 2013, 135,
16754-16757; b) Y. Unoh, K. Hirano, T. Satoh, M.
Miura, Angew. Chem. 2013, 125, 13213-13217;
Angew. Chem. Int. Ed. 2013, 52, 12975-12979; c) W.
Ma, L. Ackermann, Synthesis 2014, 46, 2297-2304;
d) T. Wang, S. Chen, A. Shao, M. Gao, Y. Huang, A.
Lei, Org. Lett. 2015, 17, 118-121; e) S. Chen, P.
Zhang, W. Shu, Y. Gao, G. Tang, Y. Zhao, Org. Lett.
2016, 18, 5712-5715; f) H. Guo, A. Yoshimura, T.
Chen, Y. Saga, L. Han, Green Chem. 2017, 19, 1502.
[5] a) W. Liu, T. Lei, S. Zhou, X. Yang, J. Li, B. Chen, J.
Sivaguru, C. Tung, L. Wu, J. Am. Chem. Soc. 2019,
141, 13941-13947; b) V. Quint, F. Morlet-Savary, J.
Lohier, J. Lalevée, A. Gaumont, S. Lakhdar, J. Am.
Chem. Soc. 2016, 138, 7436-7441; c) H. Wang, Y. Li,
Z. Tang, S. Wang, H. Zhang, H. Cong, A. Lei, ACS
Catal. 2018, 8, 10599-10605; d) T. Huang, Y. Saga,
H. Guo, A. Yoshimura, A. Ogawa, L. Han, J. Org.
Chem. 2018, 83, 8743-8749; e) H. Hou, Y. Xu, H.
Yang, X. Chen, C. Yan, Y. Shi, S. Zhu, Org. Lett.
2020, 22, 1748-1753.
(The process of the generation of pyrrole see Figure
S4 in Surpporting Information.)
In conclusion, we have described an effective
reaction between unactivated alkynes and
phosphinoyl radicals under mild reaction conditions,
opening up a new application for the hydro-azidation
of alkynes and providing a simple and practical
method for the preparation of β-ketophosphine oxides
and phospho-rus-containing pyrroles. In addition, the
combination of control experiments, powder XRD
analysis of the silver species in the system, and DFT
calculations clearly reveals the specific reaction
mechanism, which not only gives people a deeper
understanding of the chemistry of vinyl azides and
phosphorus radicals, but also provides a new means
for the study of mechanism.
Experimental Section
General procedure for the synthesis of 3
To a 10 mL Schlenk reaction tube were added 1-octyne (55
mg, 0.5 mmol), dry DMSO (2 mL), then TMSN3 (0.132
mL, 1.0 mmol), H2O (0.018 mL, 1.0 mmol), Ag3PO4 (42
mg, 0.1 mmol), diphenylphosphine oxide (1.0 mmol,
dissolved in 1 mL DMSO) were added. The mixture was
then stirred at 65 oC for 8-12 h under two balloons with the
same volume O2 and N2. Upon completion of the reaction,
saturated NH4Cl (aq.) was added to quench the reaction
and the mixture was extracted with CH2Cl2 (3 x 50 mL).
The combined organic layers were washed with H2O, brine,
dried over MgSO4, filtered, and concentrated in vacuo. The
resulting mixture was purified by silica gel column
chromatography using (petroleum ether/ethyl acetate =
1:1) to afford 3 in 80% yield as a white solid.
[6] V. V. Khrizanforova, K. V. Kholin, M. N.
Khrizanforov, M. K. Kadirov, Y. H. Budnikova, New
J. Chem. 2018, 42, 930-935.
Acknowledgements
[7] For reviews, see: a) P. Sivaguru, S. Cao, K. R. Babu,
X. Bi, Acc. Chem. Res. 2020, 53, 662-675; See also:
b) J. Liu, Z. Fang, Q. Zhang, Q. Liu, X. Bi, Angew.
Chem. 2013, 125, 7091-7095; Angew. Chem. Int. Ed.
2013, 52, 6953-6957; c) J. Liu, Z. Liu, P. Liao, X. Bi,
Org. Lett. 2014, 16, 6204-6207; d) Y. Ning, N. Wu,
H. Yu, P. Liao, X. Li, X. Bi, Org. Lett. 2015, 17,
2198-2201; e) Y. Ning, Q. Ji, P. Liao, E. A. Anderson,
We are grateful for the financial support from National Natural
Science Foundation of China (21604082), the Department of
Science and Technology of Jilin Province (20190103128JH, and
20200801065GH), and the Fundamental Research Funds for the
Central Universities (2412019FZ006, and 2412020ZD003).
References
5
This article is protected by copyright. All rights reserved.