2.39 Å between O(2) and O(2)B; (iii) each individual molecule
is bisected by a mirror plane through Pt and the ring C and P
atoms to which it is bonded; (iv) the ring P–C bond lengths
(ranging between 1.78 and 1.84 Å) are elongated compared with
those in 1 and are typical for P–C single bonds; (v) the two
P(2)NO double bond distances [1.528(12) Å] are similar to that
of the formally single P(1)–O bond [1.479(15) Å] for the
phosphorus attached to platinum. The structure suggests that the
acidic H responsible for the dimeric structure of 6 may be
capable of replacement by other cations, or substituted by
organic groups, leading to significant structural changes (Fig. 3)
and this is currently under study along with other aspects of the
ligating behaviour of 1.
We thank NSERC for a scholarship (for S. B. C.) and EPSRC
for their continuing support (to J. F. N.) for phospha-
organometallic chemistry.
Notes and references
†
31P {1H} NMR data: 2: dPA 203.0, dPB 264.8, dPX 218.3; 1J(PtPA) 2418,
1J(PtPX) 2886, 2J(PAPB) 36.3, 2J(PAPX) 543.3 Hz. 3: dPA 207.1, dPB, 264.5,
dPX 12.1; 1J(PtPA) 2378, 1J(PtPX) 2884, 2J(PAPB) 36.4, 2J(PAPX) 508.5 Hz:
4: dPA, 202.5, dPB, 265.4, dPX 211.4; 1J(PtPA) 2487, 1J(PtPX) 2920,
2J(PAPB) 36.6, 2J(PAPX) 543.6 Hz. 5: dPA 200.4, dPB 267.0, dPX 1.3;
1J(PtPA) 2569, 1J(PtPX) 2961, 2J(PAPB) 37.0, 2J(PAPX) 545.5 Hz. 6: dPP(O)H
31.4 [d, 1J(PH) 552 Hz], dPP(OH) 20.6 [br, 1J(PtP) 3155 Hz] dP(PMe ), 10.1
3
[br, 1J(PtP) 3181 Hz].
Fig. 2 Molecular structure of 6. Selected distances (Å) and angles (°): Pt–
P(1) 2.224(6), Pt–Cl 2.416(5), Pt–P(3) 2.273(6), Pt–C(2) 2.24(2), P(1)–O(1)
1.479(15), P(2)–O(2) 1.528(12), P(1)–C(1) 1.843(16), P(2)–C(2) 1.777(12),
P(2)–C(1) 1.818(15); P(1)–Pt–C(2) 82.6(6), P(1)–Pt–P(3) 96.6(2), C(2)–
Pt–P(3) 179.2(6), P(1)–Pt–Cl 178.84(19), C(2)–Pt–Cl 98.6(6), P(3)–Pt–
Cl(1) 82.3(2), C(1)–P(1)–C(1)A 97.3(9), C(2)–P(2)–C(1) 109.3(8), P(2)–
C(2)–P(2)A 114.6(12) P(2)–C(1)–P(1) 105.6(7)
195Pt NMR data (rel. K2PtCl6): 2: dPt 23705; 3: dPt 23738; 4: dPt
23710; MS data (EI): 6: m/z 660 (M+).
‡ Crystal data: 6, C18H41ClO3P4Pt·2.5CH2Cl2, M = 872.2, orthorhombic,
space group Cmca (no. 64), a = 14.508(9), b = 15.924(9), c = 29.018(12)
Å, U = 6704(6) Å3, Z = 8, Dc = 1.73 Mg m23, crystal dimensions 0.3 3
0.2 3 0.05 mm, F(000) = 3464, T = 173(2) K, Mo-Ka radiation (l =
0.71073 Å). Data were collected on an Enraf-Nonius CAD4 diffractometer
and of the total 2428 independent reflections measured, 1951 having I >
2s(I), were used in the calculations. The final indices [I > 2s(I)] were R1
= 0.075, wR2 = 0.196. The complex lies on a crystallographic mirror plane
and forms H-bonded dimers across a twofold rotation axis. All non-H atoms
were anisotropic. H atoms were included in riding mode with Uiso(H) equal
to 1.2eq(C) or 1.5eq(C) for methyl groups. The H-bonded H atom lies on a
crystallographic twofold axis and was refined.
crystallographic files in .cif format.
1 K. B. Dillon, F. Mathey and J. F. Nixon, Phosphorus: The Carbon Copy,
John Wiley, Chichester, 1998, p. 366 and references therein.
2 J. F. Nixon, Coord. Chem. Rev., 1995, 145, 201.
3 J. F. Nixon, Chem. Rev., 1988, 88, 1327.
4 Multiple bonds and low coordination in phosphorus chemistry, ed. M.
Regitz and O. J. Scherer, Georg Thieme Verlag, 1990, p. 496 and
references therein.
Fig. 3 Dimeric structure of 6.
polarity of the bond. The resulting intermediate presumably
then undergoes Arbusov-type rearrangement at two of the newly
formed –P(OH)CHBut–centres to produce –PH(O)CHBut–ring
fragments with the rearrangement at the third phosphorus centre
unable to proceed because of ligation of the P atom to Pt. The
accompanying loss of HCl and formation of a Pt–C bond leads
to the observed product 6. Mathey, Venanzi and their cowork-
ers,12–14 have previously noted selective addition of water and
methanol to 2-pyridylphosphinines 7 and 2,2A-biphosphinines 8
coordinated to electrophilic metal centres as a result of the
partial dearomatisation of the ligand.
5 P. Binger, S. Leininger, J. Stannek, B. Gabor, R. Mynott, J. Bruckmann
and C. Kruger, Angew. Chem., Int. Edn. Engl., 1995, 34, 2227.
6 F. Tabellion, A. Nachbauer, S. Leininger, C. Peters, M. Regitz and F.
Preuss, Angew. Chem., Int. Edn., 1998, 37, 1233.
7 R. Gleiter, H. Lange, P. Binger, J. Stannek, C. Kru¨ger, J. Bruckmann, U.
Zenneck and S. Kummer, Eur. J. Inorg. Chem., 1998, 1619.
8 A. J. Ashe and J. C. Colburn, J. Am. Chem. Soc., 1977, 99, 8099. A. J.
Ashe, W. Butler, J. C. Colburn and S. Abu-Orabi, J. Organomet. Chem.,
1985, 282, 233.
9 P. L. Arnold, F. G. N. Cloke, P. B. Hitchcock and J. F. Nixon, J. Am.
Chem. Soc., 1996, 118, 7630.
10 P. Binger, S. Stutzmann, J. Stannek, B. Gabor and R. Mynott, Eur. J.
Inorg. Chem., 1999, 83.
11 K. Dimroth and W. Mach, Angew. Chem., Int. Edn. Engl., 1968, 7,
460.
12 B. Schmid, L. M. Venanzi, A. Albinati and F. Mathey, Inorg. Chem.,
1991, 30, 4693.
13 D. Carmichael, P. Le Floch and F. Mathey, Phosphorus, Sulphur, 1993,
77, 255.
14 P. Le Floch, S. Mansuy, L. Ricard, F. Mathey, A. Jutand and C.
Amatore, Organometallics, 1996, 15, 3267.
Complex 6 shows the following interesting features, (i) the
structure consists of a H-bonded dimer; (ii) this H atom lies on
a crystallographic twofold axis and was refined to a distance of
Communication 9/03745D
1378
Chem. Commun., 1999, 1377–1378