A. Krasin´ski, J. Jurczak / Tetrahedron Letters 42 (2001) 2019–2021
2021
the same ratio as their precursors 8 and 9 (Scheme 2).
The major diastereoisomer 3, isolated in 65% yield
(calculated from the mixture of epoxides 8 and 9), was
subjected to ruthenium-catalysed oxidation16 furnishing
protected (−)-bulgecinine (2) in 80% yield. Deprotection
of both hydroxy groups by heating in a mixture of 3 M
aqueous HCl with THF (2:3), followed by Pd/C hydro-
genation of the benzyl carbamate, completed the syn-
thesis of (2S,4S,5R)-(−)-bulgecinine (1) in 24% overall
yield (calculated from 6) with the correct stereochem-
istry. All analytical data, including [h]D −13.5 (c 0.95,
H2O), are in agreement with those previously
reported8,9 (lit. [h]D −13.1 (c 0.95, H2O)).8b
Barrett, A. G. M.; Pilipauskas, D. J. Org. Chem. 1990,
55, 5194; (g) Barrett, A. G. M.; Pilipauskas, D. J. Org.
Chem. 1991, 56, 2787; (h) Hirai, Y.; Terada, T.;
Amemiya, Y.; Momose, T. Tetrahedron Lett. 1992, 33,
7893; (i) Oppolzer, W.; Moretti, R.; Zhou, C. Helv. Chim.
Acta 1994, 77, 2363; (j) Madau, A.; Porzi, G.; Sandri, S.
Tetrahedron: Asymmetry 1996, 7, 825; (k) Graziani, L.;
Porzi, G.; Sandri, S. Tetrahedron: Asymmetry 1996, 7,
1341; (l) Panday, S. K.; Langlois, N. Synth. Commun.
1997, 27, 1373; (m) Maeda, M.; Okazaki, F.; Murayama,
M.; Tachibana, Y.; Aoyagi, Y.; Ohta, A. Chem. Pharm.
Bull. 1997, 45, 962; (n) Fehn, S.; Burger, K. Tetrahedron:
Asymmetry 1997, 8, 2001.
10. Gryko, D.; Jurczak, J. Helv. Chim. Acta 2000, 83, 2705.
It is noteworthy that 5 undergoes the Al(Ot-C4H9)3/t-
C4H9OOH epoxidation with anti-selectivity (81:19),
leading to compound 9 as the major diastereoisomer.
This possibility provides selective access to diastereoiso-
mer 11 and, as a consequence, to 2-epi-bulgecinine.
11. The
D
-serine derivative 6 was obtained in 70% overall
-serine methyl ester hydro-
yield via the following route:
D
chloride was treated with 1 equiv. of benzaldehyde and 1
equiv. of triethylamine in methanol, followed by in situ
imine reduction with NaBH4, giving N-benzyl-
methyl ester. Its reaction with benzyl chloroformate
afforded N-Bn-N-Cbz- -serine methyl ester, then the
D-serine
D
Acknowledgements
hydroxy group was protected with TBSCl in DMF, fol-
lowed by reduction of the ester moiety with LiBH4 to
give N-Bn-N-Cbz-O-TBS-D-serinol. Finally, oxidation of
This work was supported by the State Committee for
Scientific Research (Project PBZ 6.05/T09/1999).
this amino alcohol using the TEMPO procedure12
afforded the desired aldehyde 6.
12. (a) Leanna, M. R.; Sowin, T. J.; Morton, H. E. Tetra-
hedron Lett. 1992, 33, 5029; (b) Jurczak, J.; Gryko, D.;
Kobrzycka, E.; Gruza, H.; Prokopowicz, P. Tetrahedron
1998, 54, 6051.
13. Mihelich, E. D.; Daniels, K.; Eickhoff, D. J. J. Am.
Chem. Soc. 1981, 103, 7690.
References
1. (a) Martens, J. Topics Curr. Chem. 1984, 125, 165; (b)
Coppola, G. M.; Schuster, H. F. Asymmetric Synthesis:
Construction of Chiral Molecules Using Amino Acids;
Wiley: New York, 1987; (c) Jurczak, J.; Go*le˛biowski, A.
Chem. Rev. 1989, 89, 149; (d) Reetz, M. T. Chem. Rev.
1999, 99, 1121.
2. (a) Go*le˛biowski, A.; Jurczak, J. Synlett 1993, 241; (b)
Kiciak, K.; Jacobsson, U.; Go*le˛biowski, A.; Jurczak, J.
Polish J. Chem. 1994, 68, 199.
14. Selected data: mp 64–66°C (AcOEt/hexane); [h]D −38.6 (c
1.0, CHCl3); ESIMS HR calcd for (M+Na)+
(C22H35NO6NaSi) 460.2126, found 460.2106; 1H NMR
(500 MHz, DMSO-d6): 7.37–7.27 (m, 5H), 5.12 (d, J=
12.3 Hz, 0.5H), 5.11–5.01 (m, 2H), 4.96 (d, J=12.3 Hz,
0.5H), 4.73 (dt, J1=J2=6.0 Hz, J3=12.0 Hz, 1H), 3.89–
3.84 (m, 0.5H), 3.83–3.69 (m, 2.5H), 3.68–3.62 (m, 0.5H),
3.58–3.53 (m, 0.5H), 3.22–3.13 (m, 1H), 2.28–2.20 (m,
1H), 2.11–2.00 (m, 1H), 1.98 (s, 3H), 0.81 (s, 4.5H), 0.78
(s, 4.5H), −0.01 to −0.13 (m, 6H); 13C NMR (125 MHz,
DMSO-d6): 170.23, 170.18, 153.94, 153.93, 137.18,
136.86, 128.88, 128.85, 128.54, 128.49, 128.32, 128.14,
77.03, 76.36, 66.69, 66.47, 66.31, 65.64, 62.39, 62.06,
61.57, 60.62, 60.12, 59.47, 32.60, 31.72, 26.09, 26.06,
21.46, 18.21, 18.17, −5.17, −5.28, −5.30.
3. (a) Gryko, D.; Urban´czyk-Lipkowska, Z.; Jurczak, J.
Tetrahedron 1997, 53, 13373; (b) Jurczak, J.; Prokopow-
icz, P. Tetrahedron Lett. 1998, 39, 9835.
4. Jurczak, J.; Prokopowicz, P.; Go*le˛biowski, A. Tetra-
hedron Lett. 1993, 34, 7107.
5. Gryko, D.; Jurczak, J. Tetrahedron Lett. 1997, 38, 8275.
6. Veeresa, G.; Datta, A. Tetrahedron Lett. 1997, 38, 5223.
7. (a) Veeresa, G.; Datta, A. Tetrahedron 1998, 54, 15673;
(b) Krasin´ski, A.; Gruza, H.; Jurczak, J. Heterocycles, in
press.
8. (a) Imada, A.; Kintaka, K.; Nakao, M.; Shinagawa, S. J.
Antibiot. 1982, 35, 1400; (b) Shinagawa, S.; Kashara, F.;
Wada, Y.; Harada, S.; Asai, M. Tetrahedron 1984, 40,
3465; (c) Shinagawa, S.; Maki, M.; Kintaka, K.; Imada,
A.; Asai, M. J. Antibiot. 1985, 38, 17.
9. (a) Wakamiya, T.; Yamanoi, K.; Nishikawa, M.; Shiba,
T. Tetrahedron Lett. 1985, 26, 4759; (b) Bashyal, B. P.;
Chow, H.-F.; Fleet, G. W. J. Tetrahedron Lett. 1986, 27,
3205; (c) Ohfune, Y.; Hori, K.; Sakaitani, M. Tetrahedron
Lett. 1986, 27, 6079; (d) Bayshal, B. P.; Chow, H.-F.;
Fleet, G. W. J. Tetrahedron 1987, 43, 423; (e) Ohta, T.;
Hosoi, A.; Nozoe, S. Tetrahedron Lett. 1988, 29, 329; (f)
15. Selected data: [h]D −9.32 (c 1.0, CHCl3); ESIMS HR
calcd for (M+Na)+ (C22H35NO6NaSi) 460.2126, found
1
460.2157; H NMR (500 MHz, DMSO-d6): 7.37–7.27 (m,
5H), 5.16–4.99 (m, 3H), 4.71 (t, J=4.6 Hz, 1H), 3.90–
3.76 (m, 2H), 3.68–3.60 (m, 1H), 3.54–3.38 (m, 3H),
2.29–2.13 (m, 1H), 1.99–1.93 (m, 1H), 1.97 (s, 3H),
0.86–0.77 (m, 9H), 0.04 to −0.10 (m, 6H); 13C NMR (125
MHz, DMSO-d6): 169.63, 154.41, 154.22, 136.60, 128.33,
127.80, 127.46, 74.34, 73.76, 66.11, 65.49, 65.17, 62.06,
61.72, 61.50, 60.88, 58.57, 57.90, 33.01, 32.04, 25.63,
20.83, 17.80, −5.63.
16. Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless,
K. B. J. Org. Chem. 1981, 46, 3936.
.
.