Fig. 3 ESI mass spectrum of the dinuclear complex 52Ag2 and its sodium
adduct. The insert shows the corresponding theoretical isotopic pattern.
Notes and references
†
Full synthetic procedures will be published elsewhere. The DMT-
protected 1 is chromatographically resolved into the a and b anomers.
Structural assignment is based on NOE experiments, where the b anomers
shows a key NOE signal between the H-1A and H-4A. Selected data for 5: 1H
NMR (400 MHz, CD3OD) d 8.61 (br s, 2H, bpy), 8.51 (br d, J = 10.0 Hz,
2H, bpy), 8.24 (br d, J = 7.6 Hz, 2H, bpy), 8.18 (br d, J = 7.6 Hz, 2H, bpy),
7.90 (m, 2H, bpy), 7.82 (m, 2H, bpy), 7.39 (m, 2H, bpy), 4.62 (m, 1H, H3Aa),
4.37 (m, 2H, H3Ab and H1Ab), 4.26 (m, 1H, H1Aa), 4.06 (m, 1H, H4Aa), 3.95
(m, 1H, H4Ab), 3.89 (m, 2H, H5Ab), 3.57 (m, 2H, H5Aa), 3.04–2.84 (m, 4H,
CH2bpy), 2.37 (m, 1H, H2Ab), 2.28 (m, 1H, H2Aa), 1.91 (m, 1H, H2Aa), 1.71
(m, 1H, H2Ab). FAB-MS calcd for C32H35N4O8P 635 found m/z 635.
‡ The mononuclear complex is singly charged and may appear as the major
component since it can be detected with no further dissociation.
1 For recent reviews see: M. Fujita, Acc. Chem. Res., 1999, 32, 53; D. L.
Caulder and K. N. Raymond, J. Chem. Soc., Dalton Trans., 1999, 1185;
G. F. Swiegers and T. J. Malefetse, Chem. Rev., 2000, 100, 3483; S.
Leininger, B. Olenyuk and P. J. Stang, Chem. Rev., 2000, 100, 853.
2 J.-M. Lehn, A. Rigault, J. S. Siegel, J. Harrowfield, B. Chevrier and D.
Moras, Proc. Natl. Acad. Sci. U.S.A., 1987, 84, 2565; C. Piguet, G.
Bernardinelli and G. Hopfgartner, Chem. Rev., 1997, 97, 2005; A. F.
Williams, Chimia, 2000, 54, 585.
3 W. Zargas, J. Hall, J.-M. Lehn and C. Bolm, Helv. Chim. Acta, 1991, 74,
1843; C. Piguet, G. Hopfgartner, B. Bocquet, O. Schaad and A. F.
Williams, J. Am. Chem. Soc., 1994, 116, 9092; C. R. Woods, M.
Benaglia, F. Cozzi and J. S. Siegel, Angew. Chem., Int. Ed. Engl., 1996,
35, 1830; M. Albrecht and R. Frohlich, J. Am. Chem. Soc., 1997, 119,
1656; G. Baum, E. C. Constable, D. Fenske and T. Kulke, Chem.
Cummun., 1997, 2043; E. C. Constable, T. Kulke, G. Baum and D.
Fenske, Inorg. Chem. Commun., 1998, 1, 80; H. Weizman, J. Libman and
A. Shanzer, J. Am. Chem. Soc., 1998, 120, 2188; C. Piguet, J. Inclusion
Phenom. Macrocycl. Chem., 1999, 34, 361; C. Provent, E. Rivara-
Minten, S. Hewage, G. Brunner and A. F. Williams, Chem. Eur. J., 1999,
5, 3487; G. Baum, E. C. Constable, D. Fenske, C. E. Housecroft, T.
Kulke, M. Neuburger and M. Zehnder, J. Chem. Soc., Dalton Trans.,
2000, 945; M. Albrecht, Chem. Eur. J., 2000, 6, 3485.
4 K. Groebke, J. Hunziker, W. Fraser, L. Peng, U. Diederichsen, K.
Zimmermann, A. Holzner, C. Leumann and A. Eschenmoser, Helv.
Chim. Acta, 1998, 81, 375; R. Micura, R. Kudick, S. Pitsch and A.
Eschenmoser, Angew. Chem., Int. Ed., 1999, 38, 680; A. Eschenmoser,
Science, 1999, 284, 2118.
5 For the incorporation of a copper-containing ‘base-pair’ into DNA see: E.
Meggers, P. L. Holland, W. B. Tolman, F. E. Romesberg and P. G.
Schultz, J. Am. Chem. Soc., 2000, 122, 10 714.
Fig. 2 Uv-vis titrations of di-ligandoside monophosphate 5 in MeOH with
a. Cu(CH3CN)4BF4 in CH3CN, b. Pd(CH3CN)4(BF4)2 in CH3CN, c.
AgCF3SO3 in MeOH. Bottom: a representative curve illustrating the
formation of a 1+1 complex.
The theoretically predicted pattern and isotopic distribution
perfectly matches the experimentally observed one (Fig. 3).
These results demonstrate that threading ligands on a sugar–
phosphate backbone can lead to the formation of double
stranded structures. In the prototypical ligandoside system
described here, the formation of double stranded structures is in
competition with the formation of single stranded complexes.
This can be attributed to the flexibility of both the sugar–
phosphate backbone and the bpy–CH2 ligand. It is anticipated
that further refinement of the ligand structure (i.e. changes to the
bridging unit between the sugar and the ligand, changes to the
connection position of the bpy ring) will further increase the
tendency to form double stranded structures.
6 For the modification of DNA oligonucleotides with ligandoside building
blocks, see: H. Weizman and Y. Tor, submitted for publication.
7 M. J. Gait, Oligonucleotide Synthesis, A Practical Approach, IRL Press,
1984.
We thank the National Institutes of Health (Grant Number
GM 58447) for generous support.
454
Chem. Commun., 2001, 453–454