COMMUNICATIONS
Subsequently, a solution of 20 (0.300 g, 0.638 mmol) and [Pd(PPh3)4]
(0.055 g, 0.048 mmol) in THF (5 mL) was added to the organozinc
intermediate by cannula. The mixture was heated at reflux for 20 h, cooled
to room temperature, and placed in a freezer. The white precipitate was
filtered, washed with cold THF, and dried. The precipitate was dissolved in
dichloromethane and extracted vigorously with saturated aqueous EDTA
and basified with saturated aqueous sodium bicarbonate. The organic layer
was separated, dried over magnesium sulfate, filtered, and evaporated to
afford a white crystalline solid (270 mg, 81%), m.p. 130 ± 1348C. 1H NMR
(300 MHz, CDCl3): d 9.05 (d, J 2.0 Hz, 1H), 9.04 (d, J 8.0 Hz, 1H),
8.83 (d, J 8.5 Hz, 1H), 8.53 (d, J 2.0 Hz, 1H), 8.41 (d, J 8.5 Hz, 1H),
8.06 (d, J 2.0 Hz, 1H), 7.88 (d, J 9.0 Hz, 1H), 7.81 (d, J 9.0 Hz, 1H),
7.72 (dd, J 2.0, 8.0 Hz, 1H), 6.74 (s, 2H), 6.70 (s, 2H), 3.84 (s, 3H), 3.82 (s,
3H), 2.07 (s, 6H), 2.05 (s, 6H); 13C NMR (100 MHz, CDCl3): d 158.85,
158.67, 156.12, 154.37, 151.80, 149.63, 145.51, 144.67, 138.38, 137.83, 137.67,
136.89, 136.41, 135.84, 130.23, 130.01, 128.66, 128.49, 126.62, 122.41, 120.56,
112.88, 112.82, 55.23, 55.20, 21.43, 21.34; UV/Vis (CH3CN): lmax (e) 240
(6.3 Â 104), 296 (4.3 Â 104), 354 (8.7 Â 103) nm; HR-MS: m/z: calcd for
C35H31N3O2: 525.2416; found: 525.2407.
[22] S. A. Savage, A. P. Smith, C. L. Fraser, J. Org. Chem. 1998, 63, 10048.
[23] S. L. Hargreaves, B. L. Pilkington, S. E. Russell, P. A. Worthington,
Tetrahedron Lett. 2000, 41, 1653.
[24] D. M. Walba, Tetrahedron 1985, 41, 3161.
[25] J.-M. Lehn, Makromol. Chem. Macromol. Symp. 1993, 69, 1.
[26] J. N. Demas, G. A. Crosby, J. Phys. Chem. 1971, 75, 991.
[27] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer, New
York, 1999.
[28] W. Rettig, Top. Curr. Chem. 1994, 169, 1.
[29] In a related set of 3,8-bis(phenethynyl)phenanthrolines, Tor and co-
workers have seen high fluorescence quantum yields and emission
tunability, see H. S. Joshi, R. Jamshidi, Y. Tor, Angew. Chem. 1999,
111, 2888; Angew. Chem. Int. Ed. 1999, 38, 2722.
[30] V. Balzani, A. Credi, M. Venturi, Coord. Chem. Rev. 1998, 171, 3.
[31] P. Belser, S. Bernhard, C. Blum, A. Beyeler, L. De Cola, V. Balzani,
Coord. Chem. Rev. 1999, 192, 155.
[32] Chemosensors of Ion and Molecular Recognition (Eds.: J.-P. Des-
vergnes, A. Czarnik), Kluwer, Dordrecht, 1997, 245 (492, N. ASI).
[33] V. M. Mukkala, M. Helenius, I. Hemmila, J. Kankare, H. Takalo, Helv.
Chim. Acta 1993, 76, 1361.
Received: August 28, 2000 [Z15713]
[34] J. Seyden-Penne, Chiral Auxiliaries and Ligands in Asymmetric
Synthesis, Wiley, New York, 1995.
[35] Although written explicitly for the novel heterocycle 21, this
exemplifies a general procedure for any of the compounds reported.
[1] U. S. Schubert, C. Eschbaumer, Org. Lett. 1999, 1, 1027; O. Henze, U.
Lehmann, A. D. Schlüter, Synthesis 1999, 683; U. Lehmann, O. Henze,
A. D. Schlüter, Chem. Eur. J. 1999, 5, 854; J.-P. Sauvage, M. Ward,
Inorg. Chem. 1991, 30, 3869; and the classic work of F. Kröhnke,
Synthesis 1976, 1.
[2] A. von Zelewsky, Stereochemistry of Coordination Compounds, Wiley,
Chichester, 1996.
[3] E. C. Constable in Comprehensive Supramolecular Chemistry, Vol. 9
(Eds.: J. L. Atwood, J. E. D. Davies, D. D. MacNicol, F. Vögtle, J.-M.
Lehn), Pergamon, Oxford, 1996, p. 165.
[4] T. Yamamoto, Y. Yoneda, K. Kizu, Macromol. Rapid Commun. 1995,
16, 549.
[5] B. Alpha, R. Ballardini, V. Balzani, J.-M. Lehn, S. Perathoner, N.
Sabbatini, Photochem. Photobiol. 1990, 52, 299.
[6] B. Alpha, V. Balzani, J.-M. Lehn, S. Perathoner, N. Sabbatini, Angew.
Chem. 1987, 99, 1310; Angew. Chem. Int. Ed. Engl. 1987, 26, 1266.
[7] B. Alpha, J.-M. Lehn, G. Mathis, Angew. Chem. 1987, 99, 259; Angew.
Chem. Int. Ed. Engl. 1987, 26, 266.
[8] C. Dietrich-Buchecker, J.-P. Sauvage, New J. Chem. 1992, 16, 277.
[9] J.-P. Sauvage, Acc. Chem. Res. 1990, 23, 319.
[10] J.-P. Sauvage, Acc. Chem. Res. 1998, 31, 611.
[11] Pyridine 1c was prepared by lithiation of commercially available 2,5-
dibromopyridine and quenching with elemental iodine.
[12] M. Schmittel, A. Ganz, Synlett 1997, 710.
[13] M. Levis, U. Lüning, M. Müller, M. Schmittel, C. Wöhrle, Z.
Naturforsch. B 1994, 49, 675.
Parallel Reactions for Enantiomeric
Quantification of Peptides by Mass
Spectrometry**
W. Andy Tao and R. Graham Cooks*
The accelerating trend towards the use of enantiomerically
pure compounds as drugs has underscored the need for new
methods of enantioselective synthesis and chiral analysis.[1]
The capabilities of mass spectrometry for the rapid analysis of
complex mixtures have encouraged its exploration for gas-
phase chiral recognition.[2] This has been achieved by direct
measurement of the relative abundance of two diastereomeric
ions formed by complexing enantiomers and a chiral refer-
ence,[2d,g±i] ion ± molecule reactions of diastereomeric ad-
ducts,[2c,e] or collisional dissociation of diastereomers.[2b]
Quantitative analysis, especially when one enantiomer com-
prises only a few percent of a mixture, remains a challenge.
Competitive reactions of two enantiomers toward a chiral
reference are unavoidably influenced by the relative concen-
trations of the enantiomers, which affects the accuracy of the
measurement of the enantiomeric excess (ee) unless the
selectivity factor s (the ratio of competing rate constants) is
[14] S. Toyota, C. R. Woods, M. Benaglia, J. S. Siegel, Tetrahedron Lett.
1998, 39, 2697.
[15] D. Tzalis, Y. Tor, S. Failla, J. S. Siegel, Tetrahedron Lett. 1995, 36, 3489.
[16] A. Pelter, R. Drake, Tetrahedron 1994, 50, 13775.
[17] I. Klement, M. Rottlander, C. E. Tucker, T. N. Majid, P. Knochel, P.
Venegas, G. Cahiez, Tetrahedron 1996, 52, 7201.
[18] E. Negishi, J. Org. Chem. 1977, 42, 1821.
[19] E. Negishi, T. Takahashi, A. O. King, Org. Synth. 1988, 66, 67.
[20] Because of the instability of 4-halopyridines, the hydrochloride of 1e
was used in combination with 2 molar equivalents of 3-ZnCl under
otherwise analogous Negishi conditions to produce 6-H. This inter-
mediate is treated with sodium amide in dimethyl aniline (Chichibabin
conditions) to produce the 2-aminopyridine, see: J.-C. Chambron, J.-P.
Sauvage, Tetrahedron 1987, 43, 895. The 2-aminopyridine is converted
to 6-I by reaction with isoamylnitrite and iodine in toluene (non-
aqueous Sandmeyer conditions), see: L. Friedman, J. F. Chlebowski, J.
Org. Chem. 1968, 33, 1636.
[*] Prof. R. G. Cooks, W. A. Tao
Department of Chemistry
Purdue University
West Lafayette, IN 47907 (USA)
Fax : (1)765-494-9421
[21] For recent reports of the parent heterocycle and an alkyl/aryl
derivative see: C. Y. Hung, T. L. Wang, Z. Q. Shi, R. P. Thummel,
Tetrahedron 1994, 50, 10685; J.-P. Collin, P. Gavina, J.-P. Sauvage, A.
DeCian, J. Fischer, Aust. J. Chem. 1997, 50, 951, respectively; see also:
[**] This work was supported by the U.S. Department of Energy, Office of
Energy Research. W.A.T. acknowledges fellowship support from
Triangle Pharmaceuticals.
Ä
Supporting information for this article is available on the WWW under
F. Barigelletti, B. Ventura, J.-P. Collin, R. Kayhanian, P. Gavina, J.-P.
Sauvage, Eur. J. Inorg. Chem. 2000, 113 ± 119.
Angew. Chem. Int. Ed. 2001, 40, No. 4
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4004-0757 $ 17.50+.50/0
757