T. Hudlicky et al. / Bioorg. Med. Chem. Lett. 11 (2001) 627±629
629
it will be instructive to study the potentials for stereo-
Acknowledgements
control in the rearrangement of the glycinates in more
detail. The substrates used by us dier in complexity
from the ones previously reported by Kazmaier,21 Bar-
tlett,22 and Steglich.23 The stereospeci®city of the trans-
fer of sp3 stereochemistry from C-6 of the diol to C-2
depends on the steric bulk of groups at the adjacent
positions. As long as both these positions are sub-
stituted, the only possibility for optimizing the opera-
tion of either the chair or boat transition state is to
adjust the kind and the size of the chelating agent. Such
a strategy has been successfully employed in the area of
aldol condensation and the control of syn and anti
ratios from stereospeci®cally generated enolate species.
We expect that the bulk of the chelating Lewis acid
(with attendant solvent participation) can override the
size of either the halogen or phenyl groups at C-1, the
ether at C-5, or the amide or carbamate moieties on the
nitrogen atom. Further studies will investigate the use of
lanthanide or transition-metal-based Lewis acids in this
rearrangement. We will report the results in this area as
well as progress toward morphine from acid 3 in due
course.
The authors wish to thank Procter and Gamble Phar-
maceuticals for support of this project, as well as the
National Science Foundation (CHE-9615112 and CHE-
9910412, the Environmental Protection Agency
(R826113), and TDC Research, Inc.
References
1. Cheng, M.; De, B.; Almstead, N. G.; Pikul, S.; Dowty,
M. E.; Dietsch, C. R.; Dunaway, C. M.; Gu, F.; Hsieh, L. C.;
Janusz, M. J.; Taiwo, Y. O.; Natchus, M. G.; Hudlicky, T.;
Mandel, M. J. Med. Chem. 1999, 42, 5426.
2. Natchus, M. G.; Bookland, R. G.; Laufersweiler, M. J.;
Pikul, S.; Almstead, N. G.; De, B.; Janusz, M. J.; Hsieh, L. C.;
Gu, F.; Patel, V. S.; Garver, S. M.; Peng, S. X.; Branch, T. M.;
Baker, T. R.; Hudlicky, T.; Oppong, K. J. Med. Chem. 2000,
submitted.
3. O'Brien, P. M.; Ortwine, D. F.; Pavlovsky, A. G.; Picard,
J. A.; Sliskovic, D. R.; Roth, B. D.; Dyer, R. D.; Johnson,
L. L.; Man, C. F.; Hallak, H. J. Med. Chem. 2000, 43, 156.
4. Tamura, Y.; Watanabe, F.; Makatani, T.; Yasui, K.; Fuji,
M.; Komurasaki, T.; Tsuzuki, H.; Maekawa, R.; Yoshioka,
T.; Kawada, K.; Sugita, K.; Ohtani, M. J. Med. Chem. 1998,
41, 640.
Table 1. MMP enzyme inhibition data, IC50 (nM)a
5. Whittaker, M.; Floyd, C. D. Chem. Rev. 1999, 99, 2735.
6. Le, R. L. Ann. N.Y. Acad. Sci. 1999, 878, 201.
7. Shlopov, B. V.; Lie, W.-R.; Mainardi, C. L.; Cole, A. A.;
Chubinskaya, S.; Hasty, K. A. Arthritis Rheum. 1997, 40,
2065.
8. Ahrens, D.; Koch, A. E.; Pope, R. M.; Steinpicarella, M.;
Niedbala, M. J. Arthritis Rheum. 1996, 39, 1576.
9. Blaser, J.; Triebel, S.; Maajosthusmann, U.; Rimisch, J.;
Krahlmateblowski, U.; Freudenberg, W.; Fricke, R.;
Tschesche, H. Clin. Chim. Acta 1996, 244, 17.
10. Bramhall, S. R. Int. J. Pancreat. 1997, 21, 1.
11. Wojtowicz-Praga, S. M.; Dickson, R. B.; Hawkins, M. J.
Invest. New Drugs 1997, 15, 61.
1
5
1
6
1
7
1
8
12. Matyszak, M. K.; Perry, V. H. J. Neuroimmunol. 1996, 69,
141.
MMP-2
MMP-3
MMP-13
12
1220
30
20
2490
176
38
3795
131
251
6150
338
13. Spinale, F. G.; Coker, M. L.; Krombach, S. R.; Mukherjee,
R.; Hallak, H.; Houck, W. V.; Clair, M. J.; Kribbs, S. B.; John-
son, L. L.; Peterson, J. T.; Zile, M. R. Circ. Res. 1999, 85, 364.
14. Gonzales, D.; Schapiro, V.; Seoane, G.; Hudlicky, T.;
Abboud, K. J. Org. Chem. 1997, 62, 1194.
aExperimental details for enzyme assays.1 Standard deviations for
enzyme assays were typically Æ60% of the mean or less. All assays
were conducted at pH 7.4.
15. (a) Hudlicky, T.; Gonzalez, D.; Gibson, D. T. Aldrichi-
mica Acta 1999, 31, 35. (b) Boyd, D. R.; Sheldrake, G. N. Nat.
Prod. Rep. 1998, 15, 309. (c) Hudlicky, T.; Reed, J. W. In
Advances in Asymmetric Synthesis; Hassner, A., Ed.; JAI:
Greenwich, 1995; pp 271±312.
Four of the esters prepared in this study have been
saponi®ed and tested for inhibition activity against
gelatinase A (MMP-2), stromelysin (MMP-3), and col-
lagenase 3 (MMP-13). The data presented in Table 1
reveals promising activity against MMP-2 and MMP-13
in this series of carboxylic acids. The parent structure 15
proved to be the most potent especially when compared
against its alanine analogue 18, which suered an order
of magnitude loss in binding anity. Compound 15
thus served as a scaold for analogue derivatization and
detailed SAR data from this study will be disclosed in a
forthcoming paper, along with the experimental details
for the preparation of derivatives of type 8.2
16. (a) Zylstra, G. J.; Gibson, D. T. J. Biol. Chem. 1989, 264,
14940. (b) Gibson, D. T.; Koch, J. R.; Schuld, C. L.; Kallio,
R. E. Biochemistry 1968, 7, 3795.
17. Hudlicky, T.; Stabile, M. S.; Whited, G.; Gibson, D. T.
Org. Synth. 1999, 76, 77.
18. Parker, D. T. PCT Application. WO 97/22587, 1997.
19. Kazmaier, U. Liebigs Ann. Recl. 1997, 285.
20. Decrescenzo, G.; Abbas, Z. S.; Frescos, J. N.; Getman, D.
P.; Heintz, R. M.; Mischke, Brent, V. PCT Application. WO
98/03166, 1998.
21. Kazmaier, U. Angew. Chem., Int. Ed. Engl. 1994, 33, 998.
22. Bartlett, P. A.; Barstow, J. F. J. Org. Chem. 1982, 47, 3933.
23. Steglich, W.; Kuber, B.; Engel, N. Angew. Chem., Int. Ed.
Engl. 1977, 16, 394.