Journal of the American Chemical Society
Page 8 of 10
cross-coupling reactions employing dialkylbiaryl Phosphine Ligands.
2951; (g) Yamamoto, E.; Izumi, K.; Horita, Y.; Ito, H. Anomalous
Acc. Chem. Res., 2008, 41, 1461.
reactivity of silylborane: transition-metal-free boryl substitution of aryl,
alkenyl, and alkyl halides with silylborane/alkoxy base systems. J. Am.
Chem. Soc. 2012, 134, 19997–20000. (h) Gao, P.; Wang, G.; Xi, L.;
Wang, M.; Li, S.; Shi, Z. Transition-metal-free defluorosilylation of
fluoroalkenes with silylboronates. Chin. J. Chem. 2019, 37, 1009–1014.
(10) For reviews on silyl anions, see: (a) Lerner, H.-W. Silicon
derivatives of group 1, 2, 11 and 12 elements. Coord. Chem. Rev. 2005,
249, 781–798; (b) Sekiguchi, A.; Lee V. Y.; Nanjo, M. Lithiosilanes
and their application to the synthesis of polysilane dendrimers. Coord.
Chem. Rev. 2000, 210, 11–45; (c) Kawachi, A.; Tamao, K. Preparations
and reactions of functionalized silyllithiums. Bull. Chem. Soc. Jpn.
1997, 70, 945–955.
(11) (a) George, M. V.; Peterson, D. J.; Gilman, H. Preparation of
silyl- and germylmetallic compounds. J. Am. Chem. Soc. 1960, 82,
403–406; (b) Oestreich, M.; Auer, G.; Keller, M. On the mechanism of
the reductive metallation of asymmetrically substituted silyl chlorides.
Eur. J. Org. Chem. 2005, 184–195.
(12) For examples of the generation of functionalized silyl lithium
compounds, see: (a) Tamao, K.; Kawachi, A.; Ito, Y. The first stable
functional silyl anions: (aminosilyl)lithiums. J. Am. Chem. Soc. 1992,
114, 3989–3990; (b) Tamao, K.; Kawachi, A. Reduction of
phenylchlorosilanes with lithium 1-(diemthylamino)naphthalenide: a
new access to functionalized silyllithiums. Organometallics 1995, 14,
3108–3111; (c) Kawachi, A.; Tamao, K. Different modes of reaction
of monoalkoxy- and dialkoxyphenylchlorosilanes with lithium metal:
1
2
3
4
5
6
7
8
(3) Hall, D. G., Ed. Boronic Acids: Preparation and Application in
Organic Synthesis, Medicine and Materials, 2nd revised ed.;
WileyVCH: Weinheim, Germany, 2011.
(4) For selected examples of silicon-containing bioactive
compounds, see: (a) Ramesh, R.; Reddy, D. S. Quest for novel
chemical entities through incorporation of silicon in drug scaffolds. J.
Med. Chem. 2018, 61, 3779–3798; (b) Minkovich, B.; Ruderfer I.;
Kaushansky, A.; Bravo-Zhivotovskii, D.; Apeloig, Y. α-Sila-
dipeptides: synthesis and characterization. Angew. Chem., Int. Ed. 2018,
57, 13261–13265; (c) Liu, B.; Gai, K.; Qin, H.; Liu, X.; Cao, Y.; Lu,
Q.; Lu, D.; Chen, D.; Shen, H.; Song, W.; Zhang, Y.; Wang, X.; Xu,
H.; Zhang, Y. Design, synthesis and identification of silicon-containing
HCV NS5A inhibitors with pan-genotype activity. Eur. J. Med. Chem.
2018, 148, 95–105.
(5) For selected examples of silicon-containing organic materials,
see: (a) Namba, T.; Hayashi, Y.; Kawauchi, S.; Shibata, Y.; Tanaka, K.
Rhodium-catalyzed cascade synthesis of benzofuranylmethylidene-
benzoxasiloles: elucidating reaction mechanism and efficient solid-
state fluorescence. Chem.-Eur. J. 2018, 24, 7161–7171; (b) Mouri, K.;
Wakamiya, A.; Yamada, H.; Kajiwara, T.; Yamaguchi, S. Ladder
distyrylbenzenes with silicon and chalcogen bridges: synthesis,
structures, and properties. Org. Lett. 2007, 9, 93–96; (c) Yamada, H.;
Xu, C.; Fukazawa, A.; Wakamiya, A.; Yamaguchi, S. Structural
modification of silicon-bridged ladder stilbene oligomers and
distyrylbenzenes. Macromol. Chem. Phys. 2009, 210, 904–916; (d)
Koide, Y.; Urano, Y.; Hanaoka, K.; Terai, T.; Nagano, T. Evolution of
group 14 rhodamines as platforms for near-infrared fluorescence
probes utilizing photoinduced electron transfer. ACS Chem. Biol. 2011,
6, 600–608.
(6) (a) Seyferth, D.; Kögler, H. P. Preparation of organosilicon-
substituted borazenes. J. Inorg. Nucl. Chem. 1960, 15, 99–104; (b)
Cowley, A. H.; Sisler, H. H.; Ryschkewitsch, G. E. The chemistry of
borazine. III. B–silyl boranzines. J. Am. Chem. Soc. 1960, 82, 501–502.
(7) (a) Suginome, M.; Matsuda, T.; Ito, Y. Convenient preparation
of silylboranes. Organometallics 2000, 19, 4647–4649; (b) Ohmura,
T.; Masuda, K.; Furukawa, H.; Suginome, M. Synthesis of silylboronic
esters functionalized on silicon. Organometallics 2007, 26, 1291–1294.
(8) For recent examples of transition-metal-catalyzed reactions with
silylboranes, see: (a) Cui, B.; Jia, S.; Tokunaga, E.; Shibata, N.
Defluorosilylation of fluoroarenes and fluoroalkanes. Nat. Commun.
2018, 9, 4393–4400; (b) Zarate, C.; Nakajima, M.; Martin, R. A mild
and ligand-free Ni-catalyzed silylation via C–OMe cleavage. J. Am.
Chem. Soc. 2017, 139, 1191–1197; (c) Guo, L.; Chatupheeraphat, A.;
Rueping, M. Decarbonylative silylation of esters by combined nickel
and copper catalysis for the synthesis of arylsilanes and
heteroarylsilanes. Angew. Chem., Int. Ed. 2016, 55, 11810–11813; (d)
Tani, Y.; Yamaguchi, T.; Fujiwara, T.; Terao, J.; Tsuji, Y. Copper-
catalyzed silylative allylation of ketones and aldehydes employing
allenes and silylboranes. Chem. Lett. 2015, 44, 271–273.
(9) For recent examples of transition-metal-free reactions with
silylboranes, see: (a) Morisawa, Y.; Kabasawa, K.; Ohmura, T.;
Suginome, M. Pyridine-based organocatalysts for regioselective syn-
1,2-silaboration of terminal alkynes and allenes. Asian J. Org. Chem.
2019, 8, 1092–1096; (b) Kojima, K.; Nagashima, Y.; Wang, C.;
Uchiyama, M. In situ generation of silyl anion species through Si–B
bond activation for the concerted nucleophilic aromatic substitution of
fluoroarenes. ChemPlusChem 2019, 84, 277–280; (c) Gu, Y.; Shen, Y.;
Zarate, C.; Martin, R. A mild and direct site-selective sp2-C–H
silylation of (poly)azines. J. Am. Chem. Soc. 2019, 141, 127–132; (d)
Liu, X.-W.; Zarate, C.; Martin, R. Base-mediated defluorosilylation of
C(sp2)–F and C(sp3)–F bonds. Angew. Chem., Int. Ed. 2019, 58, 2064–
2068; (e) Uematsu, R.; Yamamoto, E.; Maeda, S.; Ito, H.; Taketsugu,
T. Reaction mechanism of the anomalous formal nucleophilic
borylation of organic halides with silylborane: combined theoretical
and experimental studies. J. Am. Chem. Soc. 2015, 137, 4090–4099; (f)
Yamamoto, E.; Ukigai, S.; Ito, H. Boryl substitution of functionalized
aryl-, heteroaryl- and alkenyl halides with silylborane and alkoxy base:
expanded scope and mechanistic studies. Chem. Sci. 2015, 6, 2943–
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
selective
formation
of
(2-alkoxydisilanyl)lithium
vs
(dialkoxysilyl)lithium. Organometallics 1996, 15, 4653–4656; (d)
Kawachi, A.; Tamao, K. Structures of [(amino)phenylsilyl]lithiums
and related compounds in solution and in the solid state. J. Am. Chem.
Soc. 2000, 122, 1919–1926; (e) Kawachi, A.; Oishi, Y.; Kataoka, T.;
Tamao, K. Preparation of sulfur-substituted silyllithiums and their
thermal degradation to silylenes. Organometallics 2004, 23, 2949–
2955; (f) Iwamoto, T.; Okita, J.; Kabuto, C.; Kira, M. Sila-metalation
route to hydrido(trialkylsilyl)silyllithiums. J. Am. Chem. Soc. 2002,
124, 11604–11605.
(13) Boebel, T. A.; Hartwig, J. F. Iridium-catalyzed preparation of
silylboranes by silane borylation and their use in the catalytic
borylation of arenes. Organometallics 2008, 27, 6013–6019.
(14) Boebel, T. A.; Hartwig, J. F. Silyl-directed, iridium-catalyzed
ortho-borylation of arenes. a one-pot ortho-borylation of phenols,
arylamines, and alkylarenes. J. Am. Chem. Soc. 2008, 130, 7534–7535.
(15) (a) Karatsu, T. Photochemistry and photophysics of
organosilane and oligosilanes: updating their studies on conformation
and intramolecular interactions. J. Photochem. Photobiol., C 2008, 9,
111–137; (b) Tsuji, H.; Michl, J.; Tamao, K. Recent experimental and
theoretical aspects of the conformational dependence of UV absorption
of short chain peralkylated oligosilanes. J. Organomet. Chem. 2003,
685, 9–14.
(16) Our investigation was inspired by transition-metal-catalyzed C–
H borylation chemistry. For selected reviews, see: (a) Ishiyama, T.;
Miyaura, N. Transition metal-catalyzed borylation of alkanes and
arenes via C–H activation. J. Organomet. Chem. 2003, 680, 3–11; (b)
Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig,
J. F. C–H Activation for the construction of C–B bonds. Chem. Rev.
2010, 110, 890–931; (c) Hartwig, J. F. Regioselectivity of the
borylation of alkanes and arenes. Chem. Soc. Rev. 2011, 40, 1992–
2002; (d) Hartwig, J. F. Borylation and silylation of C–H bonds: a
platform for diverse C–H bond functionalizations. Acc. Chem. Res.
2012, 45, 864–873; (e) Xu, L.; Wang, G.; Zhang, S.; Wang, H.; Wang,
L.; Liu, L.; Jiao, J.; Li, P. Recent advances in catalytic C–H borylation
reactions. Tetrahedron 2017, 73, 7123–7157.
(17) Our investigation was also inspired by transition-metal-
catalyzed silylation reactions with hydrosilanes. For selected reviews,
see: (a) Nakajima, Y.; Shimada, S. Hydrosilylation reaction of olefins:
recent advances and perspectives. RSC Adv. 2015, 5, 20603–20616; (b)
Zaranek, M.; Pawluc, P. Markovnikov hydrosilylation of alkenes: how
an oddity becomes the goal. ACS Catal. 2018, 8, 9865–9876; (c) Xu,
Z.; Huang, W.-S.; Zhang, J.; Xu, L.-W. Recent advances in transition-
metal-catalyzed silylations of arenes with hydrosilanes: C–X bond
ACS Paragon Plus Environment