594
L. Fodor et al. / Tetrahedron Letters 52 (2011) 592–594
Alvarez, E.; Soto-Otero, R.; Voskressensky, L. G.; Altomare, C. Bioorg. Med. Chem.
2006, 14, 7205; (c) Sarker, S. D.; Dinan, L.; Sik, V.; Underwood, E.; Waterman, P.
G. Tetrahedron Lett. 1998, 39, 1421; (d) Riemer, B.; Hofer, O.; Greger, H.
Phytochemistry 1997, 45, 337; (e) Rahbaek, L.; Anthoni, U.; Christophersen, C.;
Nielsen, P. H.; Petersen, B. O. J. Org. Chem. 1996, 61, 887; (f) Viladomat, F.;
Bastida, J.; Codina, C.; Campbell, W. E.; Mathee, S. Phytochemistry 1995, 40, 307;
(g) Sakai, R.; Higa, T.; Jefford, C. W.; Bernardinelli, G. J. Am. Chem. Soc. 1986, 108,
6404; (h) Banerji, A.; Majumder, P. L.; Chatterjee, A. Phytochemistry 1970, 9,
1491; (i) Bentley, K. W. J. Am. Chem. Soc. 1967, 89, 2464.
most probably the zwitterions 4a,b. The unexpected formation of
5,6-dihydro-4H-1,5-benzothiazocines 7a,b could be explained via
intermediates 6a,b. Alternatively, during the formation of 7a,b,
DMAD could also attack an open-chain intermediate of 3a,b
(Scheme 2). Structural and conformational analyses of the products
were achieved by NMR spectroscopic (Supplementary data) and
X-ray crystallographic investigations.
4. (a) Varlamov, A. V.; Borisova, T. N.; Voskressensky, L. G.; Soklakova, T. A.;
Kulikova, L. N.; Chernyshev, A. I.; Alexandrov, G. G. Tetrahedron Lett. 2002, 43,
6767; (b) Voskressensky, L. G.; Akbulatov, S. V.; Borisova, T. M.; Varlamov, A. V.
Tetrahedron 2006, 62, 12392; (c) Voskressensky, L. G.; Listratova, A. V.;
Borisova, T. N.; Kovaleva, S. A.; Borisov, R. S.; Varlamov, A. V. Tetrahedron
2008, 64, 10443; (d) Voskressensky, L. G.; Listratova, A. V.; Borisova, T. M.;
Alexandrov, G. G.; Varlamov, A. V. Eur. J. Org. Chem. 2007, 6106; (e)
Voskressensky, L. G.; Vorobiev, I. V.; Borisova, T. N.; Varlamov, A. V. J. Org.
Chem. 2008, 73, 4596; (f) Voskressensky, L. G.; Listratova, A. V.; Bolshov, A. V.;
Bizkho, O. V.; Borisova, T. M.; Varlamov, A. V. Tetrahedron Lett. 2010, 51, 840.
5. Nubbemeyer, U. Top. Curr. Chem. 2001, 216, 125.
6. Cirrincione, G.; Diana, P. In Comprehensive Heterocyclic Chemistry III; Katritzky,
A. R., Ramsden, C. A., Taylor, R. J. K., Eds.; Elsevier Ltd: Oxford, 2008; Vol. 14, p
409.
7. Jorgensen, T.; Andersen, K. E.; Andersen, H. S.; Hohlweg, R.; Madsen, P.; Olsen,
U. B. PCT Int. Appl. WO 31497 (1996); Chem. Abstr. 1997, 126, 8146.
8. Campiani, G.; Nacci, V.; Fiorini, I.; De Filippis, M. P.; Garofalo, A.; Ciani, S. M.;
Greco, G.; Novellino, E.; Manzoni, C.; Mennini, T. Eur. J. Med. Chem. 1997, 32,
241.
The X-ray structures of compounds 5a and 7a are shown in
Figure 1.16
In summary, we have demonstrated the synthesis of medium
ring-sized 1,5-benzothiazocine isomers via ring enlargement of
N-alkyl-3,1-benzothiazines with DMAD. As expected, 5,6-dihy-
dro-2H-1,5-benzothiazocines were formed most probably via a
zwitterionic intermediate. Unexpectedly, 5,6-dihydro-4H-1,5-ben-
zothiazocines were also formed, as a consequence of attack of
DMAD on the S atom of the starting 1,3-benzothiazine. Further
experiments to extend the scope of these novel ring-enlargement
reactions and investigations of the reaction mechanisms are in
progress.
Acknowledgment
9. Miyamoto, S.; Yoshimoto, M. Chem. Pharm. Bull. 1985, 33, 4856.
10. Pei, Y.; Lilly, M. J.; Owen, D. J.; D’Souza, L. J.; Tang, X. Q.; Yu, J.; Nazarbaghi, R.;
Hunter, A.; Anderson, C. M.; Glasco, S.; Ede, N. J.; James, I. W.; Maitra, U.;
Chandrasekaran, S.; Moos, W. H.; Ghosh, S. S. J. Org. Chem. 2003, 68, 92.
11. Moormann, A. E.; Metz, S.; Toth, M. V.; Moore, W. M.; Jerome, G.; Kormeier, C.;
Manning, P.; Hansen, D. W.; Pitzele, B. S.; Webber, R. K. Bioorg. Med. Chem. Lett.
2001, 11, 2651.
12. Chen, C. L.; Chandra, A. M. S.; Kim, S.; Sangiah, S.; Chen, H.; Roder, J. D.; Qualls,
C. W.; Garrison, G. L.; Cowell, R. L.; Berlin, K. D.; Scherlag, B. J.; Lazzara, R. Food
Chem. Toxicol. 2000, 38, 817. Chem. Abstr. 2002, 133, 290884.
The authors express their thanks to the Hungarian Scientific Re-
search Foundation (OTKA) for financial support. The European Un-
ion and the European Social Fund have provided financial support
to the project under the grant agreement no. TÁMOP 4.2.1./B-09/
KMR-2010-0003.
Supplementary data
13. (a) Fodor, L.; MacLean, D. B. Can. J. Chem. 1987, 65, 18; (b) Fodor, L.; Szabó, J.;
Bernáth, G.; Sohár, P. Tetrahedron Lett. 1995, 36, 753; (c) Csomós, P.; Fodor, L.;
Sinkonen, J.; Pihlaja, K.; Bernáth, G. Tetrahedron Lett. 2006, 47, 5665; (d) Fodor,
L.; Csomós, P.; Csámpai, A.; Sohár, P. Tetrahedron Lett. 2010, 51, 3205.
14. (a) Fodor, L.; Szabó, J.; Bernáth, G.; Sohár, P. Heterocycles 1982, 19, 488; (b)
Fodor, L.; Bernáth, G.; Sohár, P.; Gröschl, D.; Meier, H. Monatsh. Chem. 2006,
137, 231; (c) Fodor, L.; Csomós, P.; Sohár, P.; Holczbauer, T.; Kálmán, A.
Monatsh. Chem. 2010, 141, 431.
15. (a) Csomós, P.; Fodor, L.; Csámpai, A.; Sohár, P. Tetrahedron 2010, 66, 3207; (b)
Fodor, L.; Csomós, P.; Csámpai, A.; Sohár, P. Synthesis 2010, 2943; (c) Fodor, L.;
Csomós, P.; Holzbauer, T.; Kálmán, A.; Csámpai, A.; Sohár, P. Tetrahedron Lett.
2011, 52, 224.
Supplementary data (general information, procedures and spec-
tral data) associated with this article can be found, in the online
References and notes
1. For selected recent reviews on medium heterocyclic rings, see: (a)
Voskressensky, L. G.; Kulikova, L. N.; Borisova, T. N.; Varlamov, A. V. Adv.
Heterocycl. Chem. 2008, 96, 81; (b) Shiina, I. Chem. Rev. 2007, 107, 239; (c)
Maier, M. E. Angew. Chem., Int. Ed. 2000, 39, 2073; (d) Mehta, G.; Singh, V. Chem.
Rev. 1999, 99, 881; (e) Molander, G. A. Acc. Chem. Res. 1998, 31, 603; (f)
Rousseau, G. Tetrahedron 1995, 51, 2777; (g) Evans, P. A.; Holmes, A. B.
Tetrahedron 1991, 44, 9131.
2. (a) Tripathi, D.; Pandey, S. K.; Kumar, P. Tetrahedron 2009, 65, 2226; (b)
Illuminati, G.; Mandolini, L. Acc. Chem. Res. 1981, 14, 95.
3. (a) Oniciu, D. C. In Comprehensive Heterocyclic Chemistry III; Katritzky, A. R.,
Ramsden, C. A., Taylor, R. J. K., Eds.; Elsevier Ltd: Oxford, 2008; Vol. 14, p 2; (b)
Carotti, A.; de Candia, M.; Catto, M.; Borisova, T. M.; Varlamov, A. V.; Mendez-
16. Crystal data: Rigaku R-axis rapid diffractometer, Mo
k = 0.71073 Å 5a 23H25NO6S, M = 443.50, chunk, white monoclinic, space
group P21/c, a = 13.1878(5), b = 14.7708(6), c = 12.7873(4) Å, b = 115.343(1)°,
V = 2251.17(14) Å3, Z = 4, Dcalcd = 1.309 Mg mÀ3 = 0.182 mmÀ1
T = 294 K,
R = 0.0377, Rw = 0.1027, Rtot = 0.0514, N = 4260, CCDC 783264. Compound 7a
23H25NO6S, M = 443.50, chunk, white monoclinic, space group P21/c,
a = 12.7820(18), b = 8.5249(13), c = 22.027(3) Å, b = 113.979(7)°, V =
2193.0(5) Å3, Z = 4, Dcalcd = 1.343 Mg mÀ3 = 0.187 mmÀ1
T = 294 K, R =
0.0351, Rw = 0.0999, Rtot = 0.0419, N = 5021, CCDC 783263.
Ka radiation,
C
,
l
,
C
,
l
,