3550
G. R. Stephenson et al. / Tetrahedron Letters 52 (2011) 3547–3550
9. Sequential use of an electrophilic organometallic complex is termed ‘iterative’
when hapticity alternates during the reaction sequence, and ‘linear’ when
hapticity is reduced by 1 for each nucloephilic addition. Sequential addition of
two nucleophiles at the same carbon corresponds to a ‘1,1’ pattern; at adjacent
carbons it is ‘1,2’. See: Stephenson, G. R.; Alexander, R. P.; Morley, C.; Howard,
P. W. Philos. Trans. R. Soc. London, Ser. A 1988, 326, 545–556; Hudson, R. D. A.;
Anson, C. E.; Mahon, M. F.; Stephenson, G. R. J. Organomet. Chem. 2001, 630, 88–
103. and (more recently and completely) Ref. 6a.
36. Charest, M. G.; Learner, C. D.; Brubaker, J. D.; Siegel, D. R.; Myers, A. G. Science
2005, 308, 395–398; Charest, M. G.; Siegel, D. R.; Myers, A. G. J. Am. Chem. Soc.
2005, 127, 8292–8293; Myers, A. G.; Siegel, D. R.; Buzard, D. J.; Charest, M. G.
Org. Lett. 2001, 3, 2923–2926.
37. Shindo, K.; Shindo, Y.; Hasegawa, T.; Osawa, A.; Kagami, O.; Furukawa, K.;
Misawa, N.; Misawa, N. Appl. Microbiol. Biotechnol. 2007, 1063–1069.
38. Seo, J.-S.; Keum, Y.-S.; Li, Q.-X. J. Agric. Food Chem. 2011, doi: 10.1021/
jf103018s.
10. The term ‘working ligand’ identifies the ligand which is active in the synthesis
and is stoichiometrically incorporated into the target structure. Other ligands
can also be important for the efficiency of the reactions and these are referred
to as ‘auxiliary ligands’.
11. Reviews: Hudlicky, T.; Reed, J. W. Synlett 2009, 685–703; Johnson, R. A. Org.
React. 2004, 63, 117–264; Hudlicky, T.; Gonzalez, D.; Gibson, D. T. Aldrichim.
Acta 1999, 32, 35–62; Hudlicky, T.; Thorpe, A. J. Chem. Commun. 1996, 1993–
2000; Carless, H. A. J. Tetrahedron: Asymmetry 1992, 3, 795–826.
12. Typical example (chlorobenzene): Hudlicky, T.; Stabile, M. R.; Gibson, D. T.;
Whited, G. M. Org. Synth. 1999, 76, 77–85.
39. Camara, B.; Seeger, M.; Gonzalez, M.; Standfuss-Gabisch, C.; Kahl, S.; Hofer, B.
Appl. Env. Microbiol. 2007, 73, 2682–2689; Vezina, J.; Barriault, D.; Sylvestre, M.
J. Bacteriol. 2007, 189, 779–788.
40. Chartrain, M.; Ikemoto, N.; Taylor, C.; Stahl, S.; Sandford, V.; Gbewonyo, K.;
Chirdo, C.; Maxwell, C.; Osoria, J.; Buckland, B.; Greasham, R. J. Biosci. Bioeng.
2000, 90, 321–327.
41. Astley, S. T.; Meyer, M.; Stephenson, G. R. Tetrahedron Lett. 1993, 34, 2035–
2538.
42. Care must be taken when aryl substituents are present;
a mechanistic
study has proposed exchange of the Fe(CO)3 group between the faces of
1-phenylcyclohexa-1,3-dienes by haptyl migration and temporary partial
ligation of the aromatic ring: Whitesides, T. H.; Neilan, J. P. J. Am. Chem.
Soc. 1976, 98, 63–73.
13. Howard, P. W.; Stephenson, G. R.; Taylor, S. C. J. Organomet. Chem. 1988, 339,
C5–C8; Howard, P. W.; Stephenson, G. R.; Taylor, S. C. Chem. Commun. 1988,
1603–1604.
14. Howard, P. W.; Stephenson, G. R.; Taylor, S. C. J. Organomet. Chem. 1989, 370,
97–109; Stephenson, G. R.; Howard, P. W.; Taylor, S. C. Chem. Commun. 1991,
127–129.
15. Howard, P. W.; Stephenson, G. R.; Taylor, S. C. Chem. Commun. 1990, 1182.
16. Stephenson, G. R.; Howard, P. W.; Taylor, S. C. J. Organomet. Chem. 1991, 419,
C14–C17.
17. Pearson, A. J.; Gelormini, A. M.; Pinkerton, A. A. Organometallics 1992, 11, 936–
938.
18. Banwell, M. G.; Ma, X.; Karunaratne, O. P.; Willis, A. C. Aust. J. Chem. 2010, 63,
1437–1447.
19. Hudlicky, T.; Rinner, U.; Gonzalez, D.; Akgun, H.; Schilling, S.; Siengalewicz, P.;
Martinot, T. A.; Pettit, G. R. J. Org. Chem. 2002, 67, 8726–8743.
20. Werner, L.; Machara, A.; Hudlicky, T. Adv. Synth. Catal. 2010, 352, 195–200;
Sullivan, B.; Carrera, I.; Drouin, M.; Hudlicky, T. Angew. Chem., Int. Ed. 2009, 48,
4229–4231; Matveenko, M.; Willis, A. C.; Banwell, M. G. Tetrahedron Lett. 2008,
49, 7018–7020; Shie, J.-J.; Fang, J.; Wong, C.-H. Angew. Chem., Int. Ed. 2008, 47,
5788–5791.
43. Stephenson, G. R.; Howard, P. W. J. Chem. Soc., Perkin Trans. 1 1994, 2873–2880;
For absolute configurations, see: Birch, A. J.; Raverty, W. D.; Stephenson, G. R. J.
Org. Chem. 1981, 46, 5166–5172; Stephenson, G. R. Aust. J. Chem. 1981, 34,
2339–2345; Birch, A. J.; Raverty, W. D.; Stephenson, G. R. Chem. Commun. 1980,
857–859.
44. Brazier, A. J.; Lilly, M. D.; Herbert, A. B. Enzyme Microb. Technol. 1990, 12, 90–94.
45. The original report of the biodioxygenation of biphenyl employed a mutant
(B8/36) strain of Sphingomonas yanoikuyae (originally referred to as
Beijerinckia B1): Gibson, D. T.; Roberts, R. L.; Wells, M. C.; Kobal, V. M.
Biochem. Biophys. Res. Commun. 1973, 50, 211–219; It was from this source that
the absolute configuration of the diene ligand was established: Ziffer, H.;
Kabuto, K.; Gibson, D. T.; Kobol, V. M. Tetrahedron 1977, 33, 2491–2496; For
other biotransformations of biphenyl, see: Gonzalez, D.; Schapiro, V.; Seoane,
G.; Hudlicky, T. Tetrahedron: Asymmetry 1997, 8, 975–977; Catelani, D.; Sorlini,
C.; Treccani, V. Experimentia 1971, 27, 1173–1174. and Refs. 37–39.
46. Ballard, D. G. H.; Courtis, A.; Shirley, I. M.; Taylor, S. C. Chem. Commun. 1983,
954; Eur. Pat. 76 606 1983.
21. Boyd, D. R.; Sharma, N. D.; Acaru, C. A.; Malone, J. F.; O’Dowd, C. R.; Allen, C. R.;
Stevenson, P. J. Org. Lett. 2010, 12, 2206–2209.
22. White, L. V.; Dietinger, C. E.; Pinkerton, D. M.; Willis, A. C.; Banwell, M. G. Eur. J.
Org. Chem. 2010, 4365–4367.
23. Labora, M.; Pandolfi, E. M.; Schapiro, V. Tetrahedron: Asymmetry 2010, 21, 153–
155; Pinkerton, D. M.; Banwell, M. G.; Willis, A. C. Aust. J. Chem. 2009, 62, 1639–
1645.
24. Schwartz, B. D.; Jones, M. T.; Banwell, M. G.; Cade, I. A. Org. Lett. 2010, 12, 5210–
5213.
47. As a starting point, typical growth conditions were based on Eur. Pat. 0 076 60
B (Taylor, S.; Brown, S. Performance Chemicals, 1986, Nov., 18–23), modified
for a solid involatile substrate (see Ref. 45) by adding the solid to the medium,
instead of using a separate vapour well / bulb (similar methods have been
described in detail for the biotransformation of chlorobenzene. see Ref. 12).
48. The quality of each colony was assessed using duplicate plates and the ‘indigo
test’ (for a version of this procedure, see Ref. 14; in our case indole was
included in the minimal salt medium).
49. Incubation overnight to an OD600 value of 0.45.
25. Findlay, A. D.; Banwell, M. G. Org. Lett. 2009, 11, 3160–3162.
26. Gilmet, J.; Sullivan, B.; Hudlicky, T. Tetrahedron 2009, 65, 212–220.
27. Bellomo, A.; Giacomini, C.; Brena, B.; Seoane, G.; Gonzalez, D. Synth. Commun.
2007, 37, 3509–3518.
50. See, for example, the 3-chloro-substituted case, which shows the same relative
stereochemistry: Russi, S.; Suecun, L.; Mombru, A.; Pardo, H.; Mariezcurrena, R.
A.; Cavalli, G.; Seoane, G. Acta Cryst. 2000, C56, 820–821.
51. (+)-(1R,2S,3S)-Tricarbonyl[(3,4,5,6-g)-3-phenyl-1,2-dihydroxycyclo-hexa-3,5-
28. Omori, A. T.; Finn, K. J.; Leisch, H.; Carroll, R. J.; Hudlicky, T. Synlett 2007, 2859–
2862.
29. Banwell, M. G.; Kokas, O. J.; Willis, A. C. Org. Lett. 2007, 9, 3503–3506.
30. Arthurs, C. L.; Raftery, J.; Whitby, H. L.; Whitehead, R. C.; Wind, N. S.; Stratford,
I. J. Bioorg. Med. Chem. Lett. 2007, 17, 5974–5977.
31. Tian, X.; Hudlicky, T.; Königsberger, K. J. Am. Chem. Soc. 1995, 117, 3643–3644;
Phung, A. N.; Zannetti, M. T.; Whited, G.; Fessner, W.-D. Angew. Chem., Int. Ed.
2003, 42, 4821–4824.
32. Kokas, O. J.; Banwell, M. G.; Willis, A. C. Tetrahedron 2008, 64, 6444–6451.
33. Sbircea, L.; Sharma, N. D.; Clegg, W.; Harrington, R. W.; Horton, P. N.;
Hursthouse, M. B.; Apperley, D. C.; Boyd, D. R.; James, S. L. Chem. Commun.
2008, 5538–5540.
diene]iron (2) purified by chromatography on silica eluted with petroleum
ether/Et2O (gradient 100/0?50/50): mp 124 °C (decomp); Found: C, 54.79; H,
3.68 (C15H12FeO5 requires C, 54.88; H, 3.66); mmax (CH2Cl2, cmÀ1) 3057, 2054,
1989; dH (CDCl3, 270 MHz) 7.4–7.1 (5H, multiplet, Harom), 5.55 (1H, d, J 4 Hz,
H-4), 5.25 (1H, dd, J 6.5, 4 Hz, H-5), 3.88 (1H, br s, 2-H), 3.65 (1H, t, J 5.5 Hz,
H-1), 3.11 (1H, d, J 7 Hz, HO-2), 3.01 (1H, d, J 5.5 Hz, HO-1), 2.51 (1H, d, J 4.5 Hz,
H-6); dC (CDCl3, 67.5 MHz) 210.8 (CO); 141.7, 130.4, 128.2, 127.4 (Carom), 87.0
(C-4), 86.8 (C-3); 81.2 (C-5), 70.8 (C-6), 68.5 (C-2), 66.6 (C-1); m/z 300 (M+-CO,
0.2%), 272 (M+-2CO, 1) 230 (M+-2CO-2OH, 0.3), 210 (M+-3CO-2OH, 0.9), 170
(3), 154 (M+-Fe(CO)3-2OH, 100), 115 (4), 76 (63). Crystal data 2: C15H12FeO5,
M = 328.10, orthorhombic, P212121, a = 8.965(4), b = 11.283(5), c = 14.204(6) Å,
V = 1436.8(11) Å3, T = 295(2) K, Z = 4, F(0 0 0) = 672,
l ; 3133
= 1.067 mmÀ1
34. Bellomo, A.; Camarano, S.; Rossini, C.; Gonzalez, D. Carbohydr. Res. 2009, 344,
44–51.
35. Khan, M. A.; Mahon, M. F.; Stewart, A. J.; Lewis, S. E. Organometallics 2010, 29,
199–204; Khan, M. A.; Lowe, J. P.; Johnson, A. L.; Stewart, A. J.; Lewis, S. E. Chem.
Commun. 2011, 215–217; For R. eutrophus B9, see: Reiner, A. M.; Hegeman, G.
D. Biochemistry 1971, 10, 2530–2536.
data, 3018 unique (Rint = 0.0606), wR2 = 0.1050, S = 1.009 (all data),
R1 = 0.0429 (2642 with I P 2r(I)), Flack parameter v = 0.02(3), final diff.
peak/hole +0.27/À0.49 eÅ-3
.
52. Howard, P. W.; Stephenson, G. R.; Taylor, S. C. Chem. Commun. 1990, 1182–
1184.