of 1, other stereoisomers of 1, and corresponding (ethereal
or glycoside) derivatives, as well as other isomeric derivatives
(i.e., diphysin4 and chamaechromone5). 3,3′-Biflavonoids
have been shown to exhibit a wide range of pharmacological
activities, such as antiviral (HIV),6 antibacterial,7 and anti-
inflammatory,8 and potential antitumor activities.9 Moreover,
Yamada and Omura et al. have recently shown10 that ethereal
derivatives of 1 are potent antimalarials in vitro (IC50 ≈ 0.55
µg/mL) against the chloroquinine-resistant strain of Plas-
modium falciparum.
Scheme 1. Biomimetic Strategy to 3,3′-Biflavanones
The intriguing structures of these highly oxygenated plant
polyphenol substances have emerged as attractive synthetic
targets.11-14 Despite considerable synthetic efforts in the past
two decades, including oxidatiVe dimerization11 of naringenin
(3) or analogous flavanone derivatives, various reductiVe
(chemical, photochemical, or electrochemical) dimerizations12
of apigenin (4) or analogous flavone derivatives, hydrogena-
tion13 of 3,3′-biflavone derivatives, and other attempts,14
chemical synthesis of 1 is still an unanswered challenge to
date.15 Herein we report the first synthesis of dl-1 by a simple
biomimetic approach, which would be generally applicable
to the synthesis of 3,3′-biflavanones.
proposed to tautomerize to ii, then dimerize at C-3, and
subsequently cyclize to give 3,3′-biflavanones. Inspired by
these biogenetic investigations,17 we envisioned a biomimetic
synthetic strategy (pathway b) in which a cyclic radical
species iv derived from flavanone derivative iii is anticipated
to undergo a biomimetic dimerization, leading to 3,3′-
biflavanone in a direct fashion.
In view of the previous difficulties in generating the C-3
radical species from the corresponding flavanone derivatives
by oxidation methods,11 we decided to explore an alternative
reductive approach from readily accessible 3-halogenated
flavanone derivatives.18 Our initial attempts to reductively
dimerize 3-iodoflavanone 5 with n-Bu3SnH or (n-Bu3Sn)2
as mediators led to the predominate formation of corre-
sponding flavanone and small yields of chalcone and flavone
derivatives. After a survey of some metallic single electron
Botta and co-workers have recently realized16 a direct
biotransformation of chalcone substrates to the corresponding
3,3′-biflavanone products as a mixture of racemate and meso
isomers, by the action of a purified plant peroxidase. The
biosynthetic pathway was thus set forth (Scheme 1, pathway
a) in which an initial phenolic radical intermediate i was
(12) (a) Kirrstetter, R. G. H.; Vagt, U. Chem. Ber. 1981, 114, 630. (b)
Li, Y.-L.; Zhang, F.-J.; Wang, Q. Chinese J. Chem. 1992, 10, 359; Chem.
Abstr. 1993, 119, 95266. (c) Lu, K.-K.; Tan, Z.; Li, Y.-L.; Wang, X. Chinese
Chem. Lett. 1995, 6, 143; Chem. Abstr. 1995, 122, 290497. (d) Chen, A.-
H.; Cheng, C.-Y.; Chen, C. W. J. Chinese Chem. Soc. (Taipei) 2002, 49,
1105. (e) Yokoe, I.; Taguchi, M.; Shirataki, Y.; Komatsu, M. J. Chem.
Soc., Chem. Commun. 1979, 333. (f) Chen, C.-F.; Zhu, Y.; Liu, Y.-C.; Xu,
J.-X. Tetrahedron Lett. 1995, 36, 2835. (g) Chen, A.-H.; Kuo, W.-B.; Chen,
C.-W. J. Chinese Chem. Soc. (Taipei) 2003, 50, 123.
(4) Stermitz, F. R.; Mead, E. W.; Foderaro, T. A.; Castro, O. Phytochem-
istry 1993, 34, 287.
(5) (a) Jin, C.; Michetich, R. G.; Daneshtalab, M. Phytochemistry 1999,
50, 505. (b) Feng, B.-M.; Pei, Y.-H.; Hua, H.-M. Chinese Chem. Lett. 2002,
13, 738. (c) Tang, S.; Bremner, P.; Kortenkamp, A.; Schlage, C.; Gray, A.
I.; Gibbons, S.; Heinrich, M. Planta Med. 2003, 69, 247.
(6) Ikegawa, T.; Ikegawa, A. JP Patent 08311056; Chem. Abstr. 1997,
126, 122450.
(7) Castro, O.; Lopez, J.; Vergara, A. J. Nat. Prod. 1986, 49, 680.
(8) Zeng, Y.-Q.; Recio, M. C.; Manez, S.; Giner, R. M.; Cerda-Nicolas,
M.; Rios, J.-L. Planta Med. 2003, 69, 893.
(13) (a) Zhu, J.-P.; Wang, Q.; Li, Y.-L. J. Chem. Soc., Chem. Commun.
1988, 1549. (b) Wang, Q.; Zhu, J.-P.; Li, Y.-L. Chinese Sci. Bull. 1990,
35, 744; Chem. Abstr. 1991, 114, 6071. Further studies were unfruitful due
to the reproducibility of these results (personal communications with Y.-L.
Li).
(9) Fujiki, H.; Horiuchi, T.; Yamashita, K.; Hakii, H.; Suganuma, M.;
Nishino, H.; Iwashima, A.; Hirata, Y.; Sugimura, T. Prog. Clin. Biol. Res.
(Plant FlaVonoids Bio. Med.) 1986, 213, 429.
(14) (a) Khan, M. S. Y.; Khan, M. H.; Javed, K. Indian J. Chem. 1990,
29B, 1101. (b) Lin, G.-Q.; Hong, R. J. Org. Chem. 2001, 66, 2877.
(15) Although a few earlier reports (cf.: refs 11b,c, 13b, and ref 10 of
ref 11a) had described the preparation of some 3,3′-biflavanone derivatives,
there are no conceivable spectroscopic evidences to support these claims.
(16) (a) Botta, B.; Ricciardi, P.; Vitali, A.; Vinciguerra, V.; Garcia, C.;
Delle-Monache, G. Heterocycles 1999, 50, 757. (b) Vitali, A.; Botta, B.;
Delle-Monache, G.; Zappitelli, S.; Ricciardi, P.; Melino, S.; Petruzzelli,
R.; Giardina, B. Biochem. J. 1998, 331, 513. (c) Botta, B.; Vinciguerra,
V.; De Rosa, M. C.; Scurria, R.; Carbonetti, A.; Ferrari, F.; Delle-Monache,
G.; Misiti, D. Heterocycles 1989, 29, 2175.
(10) Nunome, S.; Ishiyama, A.; Kobayashi, M.; Otoguro, K.; Kiyohara,
H.; Yamada, H.; Omura, S. Planta Med. 2004, 70, 76.
(11) For various attempts, see: (a) Molyneux, R. J.; Waiss, A. C., Jr.;
Haddon, W. F. Tetrahedron 1970, 26, 1409. (b) Berge, D. D.; Kale, A. V.;
Sharma, T. C. Chem. Ind. (London) 1980, 787. (c) Shivhare, A.; Kale, A.
V.; Berge, D. D. Acta Chim. Hungar. 1985, 120, 107. (d) Li, L.-Z.; Rui,
Y.-J. Beijing Daxue Xuebao (Nat. Sci. Ed.) 1990, 26, 421; Chem. Abstr.
1991, 114, 185079. For relevant studies on the synthesis of brackenin, a
3,3′-bisdihydrochalcone, see: (e) Li, Y.-L.; Zhu, J.-P.; Zhang, F.-J.; Wang,
Q. Chem. J. Chinese UniV. (Chinese Ed.) 1989, 10, 653; Chem. Abstr. 1990,
112, 197752. (f) Drewes, S. E.; Hogan, C. J.; Kaye, P. T.; Roos, G. H. J.
Chem. Soc., Perkin Trans. 1 1989, 1585. Although oxidative homocoupling
of ketone enolates (for example, cf.: Frazier, R. H.; Jr.; Harlow, R. L. J.
Org. Chem. 1980, 45, 5408 and refs therein) is well-known, this method
cannot be applied to 3,3′-biflavanone synthesis, due apparently to the
inherent lability of flavanone under strong basic or acidic conditions.
(17) Cf. also: Pelter, A.; Bradshaw, J.; Warren, R. F. Phytochemistry
1971, 10, 835.
(18) 3-Iodoflavanone derivatives are superior substrates comparing to
the corresponding 3-bromo analogues. 3-Halogenated flavanone derivatives
are selectively synthesized by either SeO2-I2 in refluxing CH3CN, NIS in
refluxing CCl4, or CuBr2 in refluxing ethyl acetate-chloroform (3:2, v/v)
as a chromatographically separable mixture of cis and trans isomers in a
ratio of ca. ∼4-5:1; see the Supporting Information for details.
272
Org. Lett., Vol. 7, No. 2, 2005