5772
D. D. Hawker, R. B. Silverman / Bioorg. Med. Chem. 20 (2012) 5763–5773
145.05, 127.46, 127.40, 127.34, 119.19, 80.34, 35.78, 35.69, 35.53,
35.36, 28.72. HRMS (ESI): Calcd for
266.0968; found 266.0954.
(GraphPad Prism). Cornish-Bowden replots indicated that the com-
pounds were competitive inhibitors.
C
11H13D2NO5 [M+Na]+
Acknowledgments
4.2.36. 4-Amino(2H2)methyl)furan-2-carboxylic acid
hydrochloride ([D2]-5a)
The authors are grateful to the National Institutes of Health for
financial support (GM066132 and DA030604). The authors would
also like to thank Park Packing Co. (Chicago, IL) for generously pro-
viding fresh pig brains for this study.
4-((tert-Butoxycarbonyl)amino(2H2)methyl)furan-2-carboxylic
acid ([D2]-13, 85 mg, 0.35 mmol) was converted to 4-amino(2H2)-
methyl)furan-2-carboxylic acid hydrochloride (63 mg, 100%) using
conditions identical to those used to convert 4-((tert-butoxycar-
bonyl)aminomethyl)furan-2-carboxylic acid (13) to 4-amino-
methyl)furan-2-carboxylic acid hydrochloride (5b) with P95%
isotopic purity by 1H NMR spectroscopy. 1H NMR (500 MHz, D2O)
d 7.81 (s, 1H), 7.30 (s, 1H). 13C NMR (126 MHz, D2O) d 158.59,
143.51, 142.27, 116.42, 116.36, 116.30, 115.55, 30.53, 30.30,
30.12. HRMS (ESI): Calcd for C6H5D2NO3 [MꢁH]ꢁ 142.0479; found
142.0471.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Krnjevic, K. Physiol. Rev. 1974, 54, 418.
4.3. Enzyme and assays
2. Baxter, C. F.; Roberts, E. J. J. Biol. Chem. 1958, 233, 1135.
3. Karlsson, A.; Fonnum, F.; Malthe-Sørenssen, D.; Storm-Mathisen, J. Biochem.
Pharmacol. 1974, 23, 3053.
4.3.1. Purification of GABA-AT from pig brain
4. Gale, K. Epilepsia 1989, 30, S1.
GABA-AT was isolated and purified from pig brain by a modified
procedure.53 The purified GABA-AT used in these experiments was
found to have a concentration of 6.41 mg/mL with a specific activ-
ity of 1.84 units/mg.
5. Van Gelder, N. M.; Elliott, K. A. C. J. Neurochem. 1958, 3, 139.
6. Bakay, R. A. E.; Harris, A. B. Brain Res. 1981, 206, 387.
7. Ribak, C. E.; Harris, A. B.; Vaugh, J. E.; Roberts, E. Science 1979, 205, 211.
8. Wu, J. Y.; Bird, E. D.; Chen, M. S.; Huang, W. M. Neurochem. Res. 1979, 4, 575.
9. Lloyd, K. G.; Shemen, L.; Hornykiewicz, O. Brain Res. 1977, 127, 269.
10. Sherif, F. M.; Ahmed, S. S. Clin. Biochem. 1995, 28, 145.
11. Gunne, L. M.; Haeggstroem, J. E.; Sjoequist, B. Nature 1984, 309, 347.
12. Silverman, R.B. Mechanism-Based Enzyme Inactivation: Chemistry and
Enzymology, Vols. I and II; CRC Press:Boca Raton, FL; 1988.
13. Silverman, R. B. Methods Enzymol. 1995, 249, 240.
4.3.2. Evaluation of compounds as inhibitors of GABA-AT
Inhibition constants were determined by monitoring GABA-AT
activity in the presence of 0–5 mM concentrations of synthesized
analogues using a coupled assay with the enzyme succinic semial-
dehyde dehydrogenase (SSADH). The assay solution consisted of
14. Lippert, B.; Metcalf, B. W.; Jung, M. J.; Casara, P. Eur. J. Biochem. 1977, 74, 441.
15. Loscher, W. Neuropharmacology 1982, 21, 803.
16. Tassinari, C. A.; Micheluccia, R.; Ambrosetto, G.; Salvi, F. Arch. Neurol. 1987, 44,
907.
10 mM GABA, 5 mM
a
-ketoglutarate, 1 mM NADP+, 5 mM b-
17. Brown, T. R.; Mattson, R. J.; Penry, J. K.; Smith, D. B.; Treiman, D. M.; Wilder, B.
J.; Ben-Menachem, E.; Miketta, R. M.; Sherry, K. M.; Szabo, G. K. Br. J. Clin.
Pharmacol. 1989, 27, 95S.
18. Sivenius, M. R.; Ylinen, A.; Murros, K.; Matilainen, R.; Riekkinen, P. Epilepsia
1987, 28, 688.
19. Karila, L.; Gorelick, D.; Weinstein, A.; Noble, F.; Benyamina, A.; Coscas, S.;
Blecha, L.; Lowenstein, W.; Martinot, J. L.; Reynaud, M.; Lepine, J. P. Int. J.
Neuropsychopharmacol. 2008, 11, 425.
20. Peng, X.-Q.; Li, X.; Gilbert, J. G.; Pak, A. C.; Ashby, C. R., Jr.; Brodie, J. D.; Dewey,
S. L.; Gardner, E. L.; Xi, Z.-X. Drug Alcohol Depend. 2008, 97, 216.
21. Maguire, M. J.; Hemming, K.; Wild, J. M.; Hutton, J. L.; Marson, A. G. Epilepsia
2010, 51, 2423.
mercaptoethanol, and excess SSADH in 50 mM potassium pyro-
phosphate buffer, pH 8.5. Enzyme activity was determined by
observing the change in absorbance at 340 nm at 25 °C.37 Compet-
itive inhibition constants were determined by Dixon plots of ob-
tained data. Prior to their evaluation, initial experiments were
performed to confirm the synthesized analogues (at 5 mM concen-
tration) do not inhibit the coupling enzymes utilized in the sub-
strate and inhibition assays.
4.3.3. Evaluation of compounds as substrates for GABA-AT
23. Nanavati, S. M.; Silverman, R. B. J. Am. Chem. Soc. 1991, 113, 9341.
25. Qiu, J.; Silverman, R. B. J. Med. Chem. 2000, 43, 706.
26. Pan, Y.; Qiu, J.; Silverman, R. B. J. Med. Chem. 2003, 46, 5292.
27. Pan, Y.; Calvert, K.; Silverman, R. B. Bioorg. Med. Chem. 2004, 12, 5719.
28. Lu, H.; Silverman, R. B. J. Med. Chem. 2006, 49, 7404.
29. Yuan, H.; Silverman, R. B. Bioorg. Med. Chem. Lett. 2007, 17, 1651.
30. Ritchie, T. J.; Macdonald, S. J. F.; Young, R. J.; Pickett, S. D. Drug Discov. Today
2011, 16, 164.
31. Clift, M. D.; Silverman, R. B. Bioorg. Med. Chem. Lett. 2008, 18, 3122.
32. Wang, Z.; Silverman, R. B. Bioorg. Med. Chem. 2006, 14, 2242.
33. Peschke, B.; Madsen, K.; Hansen, B. S.; Johansen, N. L. Bioorg. Med. Chem. Lett.
1997, 7, 1969.
Compounds were tested using an experiment in which the con-
version of
a-ketoglutarate (a-KG) to L-glutamic acid was moni-
tored as an indication of the rate of PLP reduction to PMP, which
in turn corresponds to the rate of amine oxidation to the corre-
sponding aldehyde. Enzyme reactions were prepared at varying
concentrations of compounds in 100
(50 mM, pH 8.5) containing 5 mM
mercaptoethanol, and 0.13 mg/mL purified GABA-AT and allowed
to incubate at room temperature for 16 h. The -glutamic acid con-
tent was determined by combining 50 L of each incubation mix-
ture with 50 L of Tris-HCl buffer (100 mM, pH 7.5) containing
100 M Ampliflu™ Red (Sigma-Aldrich), 0.25 units/mL horseradish
peroxidase and 0.08 units/mL -glutamate oxidase in a 96-well
lL pyrophosphate buffer
a-ketoglutarate, 2 mM 2-
L
l
l
l
34. McCoy, L. L.; Mal, D. J. Org. Chem. 1984, 49, 939.
L
35. Anderson, H. J.; Lee, S. F. Can. J. Chem. 1965, 43, 409.
36. Zhang, Y.; Yin, Z.; He, J.; Cheng, J. P. Tetrahedron Lett. 2007, 48, 6039.
37. Silverman, R. B.; Levy, M. A. Biochemistry 1981, 20, 1197.
38. Woolf, B. Algemeine Chemie der Enzyme In S Haldane, J. B., Stern, K. G, Eds.;
Steinkopf: Dresden, 1932; pp 119–120.
black walled plate. After incubation at 37 °C for 30 min fluores-
cence was recorded with the aid of a microplate reader (BioTek
Synergy H1) with 530 nm excitation and 590 nm emission wave-
39. Hanes, C. S. Biochem. J. 1932, 26, 1406.
lengths, where fluorescence is proportional to the
centration. Compounds 4a, 4b, 5a, 5c, and GABA were evaluated in
triplicate at 90 M, 225 M, 450 M, 900 M, 2.25 mM and
4.5 mM concentrations. Compounds 4c, 5b, 6a and 6b were evalu-
ated in triplicate at 900 M, 2.25 mM, 4.5 mM, 9.0 mM and
L-glutamate con-
40. Yu, P. H.; Duren, D. A.; Davis, B. A.; Boulton, A. A. Neurochem 1987, 48, 440.
41. Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry; University
Science Books, 2006 pp 428–431.
42. Forlani, L.; Marianucci, E.; Todesco, P. E. J. Chem. Res. 1984, 126.
43. Chudeck, J. A.; Foster, R.; Young, D. J. Chem. Soc. Perkin Trans. 2 1985, 1285.
44. Billard, T.; Langlois, B. R.; Blond, G. Eur. J. Org. Chem. 2001, 1467.
45. Matsui, M.; Yamada, K.; Funabiki, K. Tetrahedron 2005, 61, 4671.
46. Barys, M.; Ciunik, Z.; Drabnet, K.; Kwiecien, A. New. J. Chem. 2010, 34, 2605.
l
l
l
l
l
13.5 mM concentrations. Substrate kinetic constants were deter-
mined by Hanes–Woolf plots using linear regression analysis