10.1002/cplu.201900405
ChemPlusChem
FULL PAPER
[14] Y. Yeo, S. Jo, S. J. Park, H. M. Kim, D. Kim, T. S. Lee, Chem. Commun.
2019, 55, 6747-6750.
Optical Waveguiding. Optical properties of 1D DDT crystal,
including color charge-coupled device (CCD) images and
fluorescence spectroscopy, were measured using a home-made
laser confocal microscope (LCM) system with high spatial resolution
(≤ 200 nm). In order to characterize planar optical waveguiding
effects, the LCM system should be modified as separating the
positions of the incident laser from those of the detector. Especially,
the irradiating positions of the incident laser were precisely
controlled with an aid of the piezoelectric 2D positioning system
(Albatross, Nanofocus Inc.). The excitation wavelength (ex) was set
to 405 nm for both luminescent color CCD images and fluorescence
spectra, which were recorded by GF-033C-IRF (Allied Vision) and
SR-303I-B (Andor), respectively. The power density of the incident
laser was carefully chosen to minimize photobleaching of the crystal
sample.
[15] Y. Zhan, L. Lin, M. Chen, L. Wu, ACS Appl. Mater. Interfaces 2018, 10,
33390-33398.
[16] P. Jagadesan, T. Whittemore, T. Beirl, C. Turro, P. L. McGrier, Chem.
Eur. J. 2017, 23, 917-925.
[17] B. Tang, H. Liu, F. Li, Y. Wang, H. Zhang, Chem. Commun. 2016, 52,
6577-6580.
[18] Y. Hong, J. W. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361-5388.
[19] E. Zhao, Y. Chen, H. Wang, S. Chen, J. W. Lam, C. W. Leung, Y. Hong,
B. Z. Tang, ACS. Appl. Mater. Interfaces 2015, 7, 7180-7188.
[20] A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera,
Chem. Rev. 2000, 100, 1973-2129.
[21] T. Beppu, S. Kawata, N. Aizawa, Y. J. Pu, Y. Abe, Y. Ohba, H. Katagiri,
ChemPlusChem. 2014, 79, 536-545.
[22] R. Yan, D. Gargas, P. Yang, Nat. Photonics 2009, 3, 569-576.
[23] M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, P.
Yang, Science 2004, 305, 1269-1273.
[24] D. O’Carroll, I. Lieberwirth, G. Redmond, Nat. Nanotechnol. 2007, 2,
180-184.
[25] W. Zhu, L. Zhu, Y. Zou, Y. Wu, Y. Zhen, H. Dong, H. Fu, Z. Wei, Q. Shi,
W. Hu, Adv. Mater. 2016, 28, 5954-5957.
Acknowledgements
[26] L. Catalano, P. Commins, S. Schramm, D. P. Karothu, R. Rezgui, K.
Hadef, P. Naumov, Chem. Commun. 2019, 55, 4921-4924.
[27] R. Huang, B. Liu, C. Wang, Y. Wang, H. Zhang, J. Phys. Chem. C 2018,
122, 10510-10518.
Financial support from the National Research Foundation
(NRF) of Korean government through Basic Science Research
Program (2018R1A2A2A14022019) is gratefully acknowledged.
[28] Y. S. Kim, W. H. Park, T. S. Lee, J. Nonlinear. Opt. Phys. 2004, 13,
613-618.
Keywords: benzene-based fluorophore • crystals • fluorescence
[29] M. Tian, J. Sun, Y. Tang, B. Dong, W. Lin, Anal. Chem. 2018, 90, 998-
1005.
spectroscopy • hydrogen bonds • optical waveguiding
[30] T. H. Kim, M. S. Choi, B. H. Sohn, S. Y. Park, W. S. Lyoo, T. S. Lee,
Chem. Commun. 2008, 20, 2364-2366.
[1]
[2]
[3]
[4]
[5]
[6]
B. Tang, C. Wang, Y. Wang, H. Zhang, Angew. Chem. Int. Ed. 2017, 56,
12543-12547.
[31] K. Jayaramulu, P. Kanoo, S. J. George, T. K. Maji, Chem. Commun.
2010, 46, 7906-7908.
M. Shimizu, Y. Takeda, M. Higashi, T. Hiyama, Angew. Chem. 2009,
121, 3707-3710.
[32] J. Goodman, L. E. Brus, J. Am. Chem. Soc. 1978, 100, 7472-7474.
[33] T. Beppu, K. Tomiguchi, A. Masuhara, Y. J. Pu, H. Katagiri, Angew.
Chem. Int. Ed. 2015, 54, 7332-7335.
S. G. Jo, D. H. Park, B. G. Kim, S. Seo, S. J. Lee, J. Kim, J. Kim, J. Joo,
J. Mater. Chem. C 2014, 2, 6077-6083.
S. Kim, D. H. Kim, J. Choi, H. Lee, S. Y. Kim, J. W. Park, D. H. Park,
Materials 2018, 11, 472.
[34] X. Zheng, W. Zhu, D. Liu, H. Ai, Y. Huang, Z. Lu, ACS Appl. Mater.
Interfaces 2014, 6, 7996-8000.
Y. Hu, X. Zhou, H. Jung, S. J. Nam, M. H. Kim, J. Yoon, Anal. Chem.
2018, 90, 3382-3386.
[35] Y. Luo, C. Li, W. Zhu, X. Zheng, Y. Huang, Z. Lu, Angew. Chem. Int. Ed.
2019, 58, 6280-6284.
M. Tian, J. Sun, Y. Tang, B. Dong, W. Lin, Anal. Chem. 2018, 90, 998-
1005.
[36] Y. Akae, H. Sogawa, T. Takata, Angew. Chem. Int. Ed. 2018, 57,
14832-14836.
[7]
[8]
D. Kim, J. Kim, T. S. Lee, Sens. Actuat. B: Chem. 2018, 264, 45-51.
M. D. Watson, A. Fechtenkötter, K. Müllen, Chem. Rev. 2001, 101,
1267-1300.
[37] K. Zhou, H. Dong, H. l. Zhang, W. Hu, Phys. Chem. Chem. Phys. 2014,
16, 22448-22457.
[38]
S. G. Jo, S. Kim, E. H. Cho, D. H. Lee, J. Kim, S. J. Lee, J. Joo, Chem.
Asian J. 2012, 7, 2768-2771.
[9]
A. C. Benniston, T. P. L. Winstanley, H. Lemmetyinen, N. V.
Tkachenko, R. W. Harrington, C. Wills, Org. Lett. 2012, 6, 1374-1377.
[39] E. H. Cho, B. G. Kim, S. Jun, J. Lee, D. H. Park, K. S. Lee, J. Kim, J.
Kim, J. Joo, Adv. Funct. Mater. 2014, 24, 3684-3691.
[10] L. Hintermann, K. Suzuki, Synthesis, 2008, 14, 2303-2306.
[11] S. J. Lord, H. l. D. Lee, R. Samuel, R. Weber, N. Liu, N. R. Conley, M.
A. Thompson, R. J. Twieg, W. E. Moerner, J. Phys. Chem. B 2010, 114,
14157-14167.
[40] M. P. Zhuo, Y. C. Tao, X. D. Wang, Y. Wu, S. Chen, L. S. Liao, L. Jiang,
Angew. Chem. Int. Ed. 2018, 57, 11300-11304.
[41] L. Catalano, D. P. Karothu, S. Schramm, E. Ahmed, R. Rezgui, T. J.
Barber, A. Famulari, P. Naumov, Angew. Chem. Int. Ed. 2018, 57,
17254-17258.
[12] S. Kim, S. Y. Park, Adv. Mater. 2003, 16, 1341-1344.
[13] Y. Okada, M. Sugai, K. Chiba, J. Org. Chem. 2016, 81, 10922-10929.
This article is protected by copyright. All rights reserved.