Please do not adjust margins
Journal of Materials Chemistry C
Page 8 of 9
ARTICLE
Journal Name
within the range from one to three, suggesting, the addition of Fe3+
Camaschella, Cell, 2010, 142, 24–38.
D. Galaris, V. Skiada and A. BarboutDi,OCIa:n10ce.1r0L3e9t/tD.0, 2TC000180,82K
266, 21–29.
9
into the quenched BPVMB-Cu2+ complex leads to the emergence of
green emission resulting from the formation of BPVMB-Fe3+. The
above results further validate that the non-fluorescent BPVMB-Cu2+
complex can be used as a latent off-on sensor for Fe3+. In summary,
fluorescence detection limits of BPVMB for Fe3+ by displacement
approach were tested. A plot of F516/F416 versus [Fe3+] in acetonitrile
solution gave a linear relationship (Fig. S12). The detection limit is
2.631 μM calculated on the basis of 3σ/K.39
10
11
12
13
L. Gambling, S. Dunford, D. I. Wallace, G. Zuur, N. Solanky,
S. K. S. Srai and McArdle, J. Physiol., 2003, 552, 603–610.
P. Dusek, P. M. Roos, T. Litwin, S. A. Schneider, T. P. Flaten
and J. Aaseth, J. Trace Elem. Med. Biol., 2015, 31, 193–203.
J. Cui, Y. Li, P. Yu, Q. Zhan, J. Wang, Y. Chi and P. Wang, Int.
J. Biol. Macromol., 2018, 108, 412–418.
M. J. Wilson, J. W. T. Dekker, J. J. Harlaar, J. Jeekel, M.
Schipperus and J. J. Zwaginga, Int. J. Colorectal Dis., 2017,
32, 1617–1624.
S. Goswami, D. Sen and N. Kumar Das, Org. Lett., 2010, 12,
856–859.
S. L. Alires, F. A. Monge, D. G. Whitten and E. Y. Chi,
Biophys. J., 2019, 116, 147a.
J. J. Bryant, B. D. Lindner and U. H. F. Bunz, J. Org. Chem.,
2013, 78, 1038–1044.
M. Ghaedi, K. Mortazavi, M. Montazerozohori, A.
Shokrollahi and M. Soylak, Mater. Sci. Eng. C, 2013, 33,
2338–2344.
D. Xia, S. Song, W. Gong, Y. Jiang, Z. Gao and J. Wang, J.
Food Eng., 2012, 113, 11–18.
R. Sharma, M. Chhibber and S. K. Mittal, RSC Adv., 2015, 5,
21831–21842.
C. Zou, L. Gao, T. Liu, Z. Xu and J. Cui, J. Incl. Phenom.
Macrocycl. Chem., 2014, 80, 383–390.
P. Madhu and P. Sivakumar, J. Photochem. Photobiol. A
Chem., 2019, 371, 341–348.
Q. Zhang, J. Wang, A. M. Kirillov, W. Dou, C. Xu, C. Xu, L.
Yang, R. Fang and W. Liu, ACS Appl. Mater. &
Interfaces, 2018, 10, 23976–23986.
W.-K. Dong, S. F. Akogun, Y. Zhang, Y.-X. Sun and X.-Y.
Dong, Sensors Actuators B Chem., 2017, 238, 723–734.
K. Ogawa, F. Guo and K. S. Schanze, J. Photochem.
Photobiol. A Chem., 2009, 207, 79–85.
V. K. Gupta, N. Mergu and L. K. Kumawat, Sensors
Actuators B Chem., 2016, 223, 101–113.
Y. Zhou, F. Wang, Y. Kim, S.-J. Kim and J. Yoon, Org. Lett.,
2009, 11, 4442–4445.
Z. Xu, K.-H. Baek, H. Na Kim, J. Cui, X. Qian, D. R. Spring, I.
Shin and J. Yoon, J. Am. Chem. Soc., 2009, 132, 601–610.
S. K. Sahoo, D. Sharma, R. K. Bera, G. Crisponi and J. F.
Callan, Chem. Soc. Rev., 2012, 41, 7195–7227.
X. Y. Liu, D. R. Bai and S. Wang, Angew. Chemie Int. Ed.,
2006, 45, 5475–5478.
Z. M. Hudson, X.-Y. Liu and S. Wang, Org. Lett., 2010, 13,
300–303.
K.-L. Woon, C.-L. Yi, K.-C. Pan, M. K. Etherington, C.-C. Wu,
K.-T. Wong and A. P. Monkman, J. Phys. Chem. C, 2019,
123, 12400–12410.
Conclusions
14
15
16
17
We have synthesized a new fluorescent probe BPVMB for
ratiometric and colorimetric Fe3+ sensing. BPVMB has the
strongest affinity with Fe3+ among all heavy and transition metal
ions and a high selectivity for Fe3+ in two interaction modes:
through space and through bond charge transfer. The
fluorescent quenching was observed at low Fe3+ concentration
(below 6 µM) and then a large red-shift in emission from 416
nm to 520 nm as the Fe3+ increases from (7 µM to 20 µM)
resulting from the formation of the Fe3+-BPVMB complex. Also,
ratiometric and colorimetric detection of Fe3+ with higher
sensitivity can be achieved via a Cu2+ displacement approach.
18
19
20
21
22
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
This research was funded by the Leading Talents of
Guangdong Province Program (2016LJ06N507), Shenzhen Basic
Research Fund (CYJ20170817110652558), the National Key
23
24
25
26
27
28
29
30
31
Research
and
Development
Program
of
China
(2018YFB0704100), the Key-Area Research and Development
Program of GuangDong Province (2019B010941001).
Notes and references
1
Y. Guo, L. Wang, J. Zhuo, B. Xu, X. Li, J. Zhang, Z. Zhang, H.
Chi, Y. Dong and G. Lu, Tetrahedron Lett., 2017, 58, 3951–
3956.
2
3
K. P. Carter, A. M. Young and A. E. Palmer, Chem. Rev.,
2014, 114, 4564–4601.
Y. Jeong and J. Yoon, Inorganica Chim. Acta, 2012, 381, 2–
14.
4
5
X. Qian and Z. Xu, Chem. Soc. Rev., 2015, 44, 4487–4493.
T. Rasheed, M. Bilal, F. Nabeel, H. M. N. Iqbal, C. Li and Y.
Zhou, Sci. Total Environ., 2018, 615, 476–485.
D. Wu, A. C. Sedgwick, T. Gunnlaugsson, E. U. Akkaya, J.
Yoon and T. D. James, Chem. Soc. Rev., 2017, 46, 7105–
7123.
6
32
33
34
P. Shen, Z. Zhuang, X.-F. Jiang, J. Li, S. Yao, Z. Zhao and B.
Zhong Tang, J. Phys. Chem. Lett., 2019, 10, 2648–2656.
G. Song, R. Sun, J. Du, M. Chen and Y. Tian, Chem.
Commun., 2017, 53, 5602–5605.
C. J. Cramer and D. G. Truhlar, Chem. Rev., 1999, 99, 2161–
2200.
7
8
D. En, Y. Guo, B.-T. Chen, B. Dong and M.-J. Peng, RSC Adv.,
2014, 4, 248–253.
M. W. Hentze, M. U. Muckenthaler, B. Galy and C.
8 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins