COMMUNICATIONS
[1] a) P. J. Fagan, J. C. Calabrese, B. Malone, Science 1991, 252, 1160 ± 1161;
b) A. L. Balch, J. W. Lee, B. C. Noll, M. M. Olmstead, Inorg. Chem.
1993, 32, 3577 ± 3578; c) R. E. Douthwaite, M. L. H. Green, A. H. H.
Stephens, J. F. C. Turner, J. Chem. Soc. Chem. Commun. 1993, 1522 ±
1523; d) J. T. Park, J.-J. Cho, H. Song, J. Chem. Soc. Chem. Commun.
1995, 15 ± 16; e) H.-F. Hsu, Y. Du, T. E. Albrecht-Schmitt, S. R. Wilson,
J. R. Shapley, Organometallics 1998, 17, 1756 ± 1761; f) A. L. Balch,
M. M. Olmstead, Chem. Rev. 1998, 98, 2123 ± 2165.
(49%). Compound 2a was shown to be stable towards
transformation into 2b under similar irradiation conditions,
and this implies the photochemical route selectively forms 2b
from 1. Compounds 2a and 2b were not interconvertible upon
prolonged heating at 808C, that is, no intermetal movement of
the isocyanide ligand occurs in these clusters.
In conclusion, we have demonstrated the first transforma-
tion of the bonding mode of C60 from m3-h2,h2,h2 (p) to m3-
h1,h2,h1 (s) on an Os3 framework induced by an external
ligand (1 !2a 2b). We have shown that the selective
formation of isomer 2b can be accomplished by UV
irradiation. Efforts are currently underway to understand
the thermal and photochemical conversion pathways of the p
and s C60 ± metal interactions. Reactivity studies and selective
functionalization of the C60 ligand of 2a and 2b are also in
progress.
[2] a) M. Sawamura, H. Iikura, E. Nakamura, J. Am. Chem. Soc. 1996, 118,
12850 ± 12851; b) H. Iikura, S. Mori, M. Sawamura, E. Nakamura, J.
Org. Chem. 1997, 62, 7912 ± 7913.
Â
[3] a) M. Rasinkangas, T. T. Pakkanen, T. A. Pakkanen, M. Ahlgren, J.
Rouvinen, J. Am. Chem. Soc. 1993, 115, 4901; b) I. J. Mavunkal, Y. Chi,
S.-M. Peng, G.-H. Lee, Organometallics 1995, 14, 4454 ± 4456; c) A. N.
Chernega, M. L. H. Green, J. Haggitt, A. H. H. Stephens, J. Chem. Soc.
Dalton Trans. 1998, 755 ± 767; d) K. Lee, C. H. Lee, H. Song, J. T. Park,
H. Y. Chang, M.-G. Choi, Angew. Chem. 2000, 112, 1871 ± 1874; Angew.
Chem. Int. Ed. 2000, 39, 1801 ± 1804.
[4] a) H.-F. Hsu, J. R. Shapley, J. Am. Chem. Soc. 1996, 118, 9192 ± 9193;
b) K. Lee, H.-F. Hsu, J. R. Shapley, Organometallics 1997, 16, 3876 ±
3877; c) K. Lee, J. R. Shapley, Organometallics 1998, 17, 3020 ± 3026;
d) J. T. Park, H. Song, J.-J. Cho, M.-K. Chung, J.-H. Lee, I.-H. Suh,
Organometallics 1998, 17, 227 ± 236; e) H. Song, K. Lee, J. T. Park, M.-
G. Choi, Organometallics 1998, 17, 4477 ± 4483; f) H. Song, K. Lee, J. T.
Park, M.-G. Choi, J. Organomet. Chem. 2000, 599, 49 ± 56.
[5] a) S. Zhang, T. L. Brown, Y. Du, J. R. Shapley, J. Am. Chem. Soc. 1993,
115, 6705 ± 6709; b) S. Ballenweg, R. Gleiter, W. Krätschmer, Tetrahe-
dron Lett. 1993, 34, 3737 ± 3740; c) Y.-H. Zhu, L.-C. Song, Q.-M. Hu, C.-
M. Li, Org. Lett. 1999, 1, 1693 ± 1695.
Experimental Section
Details on the synthesis as well as full spectroscopic characterization of 1,
2a, and 2b are given in the Supporting Information. For the X-ray structure
analyses, data were collected on a CCD diffractometer with MoKa radiation
(l 0.71073 ) by using
w scans. Crystallographic data (excluding
structure factors) for the structures reported in this paper have been
deposited with the Cambridge Crystallographic Data Centre as supple-
mentary publication no. CCDC-151706 (1), CCDC-151707 (2a), and
CCDC-151708 (2b). Copies of the data can be obtained free of charge
on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax:
(44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).
[6] A. V. Rivera, G. M. Sheldrick, M. B. Hursthouse, Acta Crystallogr. Sect.
B 1978, 34, 1985 ± 1988.
2a: Analysis calcd for C85H14N2O8S2Os3 (2a ´ CS2): C 55.92, H 0.77, N 1.53, S
3.51; found: C 55.50, H 0.68, N 1.29, S 3.57; IR (C6H12): nÄ 2079 (s), 2068
1
1
(s), 2019 (s), 1986 cm (s) (CO); nÄ 2189 (w), 1634 cm (vw) (CN);
1H NMR (400 MHz, CS2/CDCl3, 298 K): d 7.49 ± 6.98 (m, 10H; Ph), 5.50
(d, 1H, JH,H 13 Hz; CH2), 4.95 (brs, 2H; CH2), 4.87 (d, 1H, JH,H 13 Hz;
CH2); 13C NMR (carbonyl region, 100 MHz, C6H4Cl2/C6D5CD3, 298 K):
d 179.96, 179.00, 178.32, 176.74, 175.74, 174.55, 173.39, 168.95; MS
Expanding the Pyrimidine Diphosphosugar
Repertoire: The Chemoenzymatic Synthesis of
Amino- and Acetamidoglucopyranosyl
Derivatives**
(FAB ): m/z: 1754 [M ].
Jiqing Jiang, John B. Biggins, and Jon S. Thorson*
X-ray data for 2a: Brown crystals were obtained by slow diffusion of
hexane into a solution of 2a in CS2 at room temperature. A crystal of
dimensions 0.12 Â 0.14 Â 0.42 mm was used for data collection:
C84H14N2O8Os3 ´ CS2, Mr 1825.7; monoclinic, space group P21/c, Z 4,
1calcd 2.105 gcm 3, a 19.4334(2), b 10.6922(2), c 29.0892(2) , b
107.6158, V 5760.9(1) 3. The structure was solved by direct methods
and refined by full-matrix least-squares analysis to give R 0.0448 and
Rw 0.0695 (based on F 2) for 878 variables and 11490 observed reflections
with I > 2s(I) and 1.47 < q < 26.23. Data collection at T 293(2) K.
An extensive body of in vivo genetic evidence indicates that
the glycosyltransferases involved in secondary metabolism are
extremely promiscuous with respect to their nucleotide
diphosphosugar (NDP-sugar) donor.[1] Yet, in vitro experi-
ments in this area are limited to only a few examples, partly
because of the lack of the required NDP-sugar substrates for
2b: Analysis calcd for C84H14N2O8Os3: C 57.66, H 0.81, N 1.60; found: C
56.76, H 0.61, N 1.22; IR (C6H12): nÄ 2085 (vs), 2052 (s), 2026 (vs), 2015 (w),
1
1
[*] Prof. Dr. J. S. Thorson, Dr. J. Jiang, J. B. Biggins
Laboratory for Biosynthetic Chemistry
Memorial Sloan ± Kettering Cancer Center
1275 York Avenue, Box 309, New York, NY 10021 (USA)
Fax : (1)212-717-3066
1992 (w), 1982 (w), 1968 cm (m) (CO); nÄ 2185 (w), 1629 cm (vw)
(CN); 1H NMR (400 MHz, CS2/CDCl3, 298 K): d 7.49 ± 7.19 (m, 10H;
Ph), 5.66 (d, 1H, JH,H 13 Hz; CH2), 5.48 (d, 1H, JH,H 16 Hz; CH2), 5.41
(d, 1H, JH,H 16 Hz; CH2), 4.88 (d, 1H, JH,H 13 Hz; CH2); 13C NMR
(carbonyl region, 100 MHz, C6H4Cl2/C6D5CD3, 223 K): d 181.9, 176.9,
and
176.1, 175.8, 175.5, 174.5, 173.2, 169.2; MS (FAB ): m/z 1754 [M ].
X-ray crystal data for 2b: Brownish black crystals were obtained by slow
diffusion of methanol into a solution of 2b in toluene at room temperature.
A crystal of dimensions 0.41 Â 0.29 Â 0.11 mm was used for data collection:
The Sloan ± Kettering Division
Joan and Sanford I. Weill Graduate School of Medical Sciences
Cornell University
C84H14N2O8Os3, Mr 1749.6; monoclinic, space group P21/c, Z 4, 1calcd
3
[**] This contribution was supported by the National Institutes of Health
(GM58196 and CA84374), a Cancer Center Support Grant (CA-
08748), and a grant from the Special Projects Committee of the
Society of Memorial Sloan ± Kettering Cancer Center. J.S.T. is an
Alfred P. Sloan Research Fellow and a Rita Allen Foundation Scholar.
2.024 gcm
,
a 19.9376(8), b 23.0770(9), c 12.8318(5) , b
103.462(1)8, V 5741.7(4) 3. The structure was solved by direct methods
and refined by full-matrix least-squares analysis to give R 0.0779 and
Rw 0.1995 (based on F 2) for 851 variables and 8192 observed reflections
with I > 2s(I) and 1.37 < q < 23.34. Data collection at T 193(2) K.
Supporting information for this article is available on the WWW under
Received: November 10, 2000 [Z16079]
1502
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4008-1502 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2001, 40, No. 8