Dalton Transactions
Paper
J. N. Carter, K. E. Beatty, M. T. Simpson and A. Butler,
J. Inorg. Biochem., 2002, 91, 59–69.
66 H. J. Fromm, in Initial Rate Enzyme Kinetics, Springer,
Berlin, New York, 1975.
48 For the expression of bromoperoxidase from C. pilulifera
in Saccharomyces cerevisiae, see: T. Ohshiro, W. Hemrika,
T. Aibara, R. Wever and Y. Izumi, Phytochemistry, 2002, 60,
595–601.
49 For the expression of bromoperoxidase from C. pilulifera
in Escherichia coli, see: M. Shimonishi, S. Kuwamoto,
H. Inoue, R. Wever, T. Ohshiro, Y. Izumi and T. Tanabe,
FEBS Lett., 1998, 428, 105–110.
50 For methods of electrophilic and homolytic organobro-
mine syntheses, see: O. Brücher and J. Hartung, ACS
Catal., 2011, 1, 1448–1454, and references cited therein.
51 For exploratory studies on hydrocarbon bromination in
oxidations catalyzed by acetone-powder from C. vancouver-
iensis, see: M. Shang, R. K. Okuda and D. Worthen, Phyto-
chemistry, 1994, 37, 307–310.
52 For exploratory studies on hydrocarbon bromination in
oxidations catalyzed by the vanadate(V)-dependent bromo-
peroxidase from C. pilulifera, see: N. Itoh, A. K. M.
Q. Hasan, Y. Izumi and H. Yamada, Eur. J. Biochem., 1988,
172, 477–484.
53 A. Butler and M. Sandy, Nature, 2009, 460, 848–854.
54 O. Bortolini, M. Carraro, V. Conte and S. Moro,
Eur. J. Inorg. Chem., 2003, 42–46.
55 H. Keller-Rudek, D. Koschel, P. Merlet, U. Ohms-
Bredemann, J. Wagner and A. Wietelmann, in Gmelin
Handbook of Inorganic and Organometallic Chemistry,
ed. R. Haubold, J. V. Jonanne, H. Keller-Rudek,
D. Koschel, P. Merlet and J. Wagner, Supplement 2,
Springer, Heidelberg, 8th edn, 1992.
56 W. J. Wilson and F. G. Soper, J. Chem. Soc., 1949, 3376–
3379.
57 G. Bellucci, R. Bianchini, R. Ambrosetti and G. Ingrosso,
J. Org. Chem., 1985, 50, 3313–3318.
58 R. S. Brown, H. Slebocka-Tilk, A. J. Bennet, G. Bellucci,
R. Bianchini and R. Ambrosetti, J. Am. Chem. Soc., 1990,
112, 6310–6316.
59 S. Forenza, L. Minale, R. Riccio and E. Fattorusso,
J. Chem. Soc., Chem. Commun., 1971, 1129–1130.
60 I. Mancini, G. Guella, P. Amade, C. Roussakis and
F. Pietra, Tetrahedron Lett., 1997, 38, 6271–6274.
61 N. S. Reddy, P. Ramesh, T. P. Rao and Y. Venkateswarlu,
Ind. J. Chem B., 1999, 38, 1145–1147.
62 E. de Boer, H. Platt, M. G. M. Tromp, R. Wever,
M. C. Franssen, H. C. van der Plas, E. M. Meijer and
H. E. Schoemaker, Biotechnol. Bioeng., 1987, 30, 607–610.
63 C. Leblanc, D. Wischang and J. Hartung, unpublished
results.
67 C.-R. Yang, B. E. Shapiro, E. D. Mjolsness and
G. W. Hatfield, Bioinformatics, 2005, 21, 774–780.
68 W. W. Cleland, Biochim. Biophys. Acta, 1963, 67, 104–137.
69 D. Rehder, in Bioinorganic Vanadium Chemistry, Wiley,
Chichester, 2008, pp. 105–128.
70 H. Dau, J. Dittmer, M. Epple, J. Hanss, E. Kiss, D. Rehder,
C. Schulzke and H. Vilter, FEBS Lett., 1999, 457, 237–240.
71 M. Whitefield, Mar. Chem., 1973, 1, 251–266.
72 E. de Boer, M. G. M. Tromp, H. Plat, G. E. Krenn and
R. Wever, Biochim. Biophys. Acta, 1986, 872, 104–115.
73 B. E. Krenn, H. Plat and R. Wever, Biochim. Biophys. Acta,
1987, 912, 287–291.
74 N. Itoh, H. Sasaki, N. Ohsawa, M. S. Shibata and J. Miura,
Phytochemistry, 1996, 42, 277–281.
75 D. Wischang and J. Hartung, Tetrahedron, 2011, 67, 4048–
4054.
76 (a) J. H. Espenson, O. Pestovsky, P. Huston and S. Staudt,
J.
Am.
Chem.
Soc.,
1994,
116,
2869–2877;
(b) M. S. Reynolds, S. J. Morandi, J. W. Raebiger,
S. P. Melican and S. P. E. Smith, Inorg. Chem., 1994, 33,
4977–4984.
77 E. A. Shilov, J. Am. Chem. Soc., 1938, 60, 490–491.
78 F. Beer, G. Düsing and H. Pistor, in Wasserstoffperoxid und
seine Derivate – Chemie und Anwendung (translates into:
Hydrogen peroxide and its derivatives – chemistry and appli-
cation), ed. W. Weigert, Hüthig, Heidelberg, 1998,
pp. 23–35.
79 C. W. Jones, in Application of Hydrogen Peroxide and
Derivatives, RSC Clean Technology Monographs, Cam-
bridge, 1999, pp. 156–162.
80 G. Jones and S. Baeckström, J. Am. Chem. Soc., 1934, 56,
1517–1523.
81 H. A. Young, J. Am. Chem. Soc., 1950, 72, 3310–3312.
82 C. M. Kelley and H. V. Tartar, J. Am. Chem. Soc., 1956, 78,
5752–5756.
83 (a) G. Bellucci, R. Bianchini and S. Vecchiani, J. Org.
Chem., 1986, 51, 4224–4232; (b) J. Berthelot, C. Guette,
P.-L. Desbène, J.-J. Basselier, P. Chaquin and D. Masure,
Can. J. Chem., 1989, 67, 2061–2066.
84 (a) S. Doonan, in The Chemistry of Functional Groups – The
Chemistry of the Carbon-Halogen Bond, ed. S. Patai, Wiley,
Chichester, 1973, pp. 865–915; (b) Y. Sasson, in The Chem-
istry of Functional Groups – Supplement D2, The Chemistry
of Halides, Pseudo-Halides, and Azides, ed. S. Patai and
Z. Z. Rappoport, Wiley, Chichester, 1995, pp. 535–628.
85 G. W. Klumpp, in Reaktivität in der Organischen Chemie,
Thieme, Stuttgart, 1977, vol. 1, pp. 139–231.
64 H. Vilter, Metal ions in biological systems, in Vanadium
and its Role in Life, ed. H. Sigel and A. Sigel, Dekker,
New York, 1995, vol. 31, pp. 325–362.
65 By mistake the proposed vanadate(V)-binding site in ref.
21 was abbreviated as His-517. The correct position of this
amino acid according to the numbering outlined in
Table 1 is His-537.
86 N. T. Anh, in Frontier Orbitals, Wiley, Chichester, 2007.
87 A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
88 C. Lee, W. Yang and R. G. Parr, Phys. Rev., 1988, B37, 785–
789.
89 For the assessment of the B3LYP/6-311++G**-theory in
bromonium ion formation, see: V. I. Teberedikis and
M. P. Sigalas, Tetrahedron, 2003, 59, 4749–4756.
This journal is © The Royal Society of Chemistry 2013
Dalton Trans., 2013, 42, 11926–11940 | 11939