Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
K. Linn and C. Mealli, J. Organomet. Chem., 1993, 448, C6; (d)
A. Satake and T. Nakata, J. Am. Chem. Soc., 1998, 120,
phosphide.
DOI: 10.1039/D0CC04854B
10391; For recent examples: (e) R. Shintani, S. Park and T. 15 The structure of compound 3ca was determined by X-ray
Hayashi, J. Am. Chem. Soc., 2007, 129, 14866; (f) W. Liu, D.
Chen, X.-Z. Zhu, X.-L. Wan and X.-L. Hou, J. Am. Chem. Soc.,
2009, 131, 8734; (g) J.-Q. Huang, C.-H. Ding and X.-L. Hou, J.
Org. Chem., 2014, 79, 12010; (h) J.-Q. Huang, W. Liu, B.-H.
Zheng, X. Y. Liu, Z. Yang, C.-H. Ding, H. Li, Q. Peng and X.-L.
Hou, ACS Catal., 2018, 8, 1964.
crystallographic analysis. CCDC 2016109 contains the
supplementary crystallographic data for this paper. These
data
can
be
obtained
free
of
charge
via
data_request@ccdc.cam.ac.uk, or by contacting The
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
3
(a) R. Grigg and M. Kordes, Eur. J. Org. Chem., 2001, 707; (b)
R. Shintani, S. Park, F. Shirozu, M. Murakami and T. Hayashi, 16 For selected examples: (a) R. Verhé, N. De Kimpe, L. De
J. Am. Chem. Soc., 2008, 130, 16174; (c) R. Shintani, T. Tsuji,
S. Park and T. Hayashi, J. Am. Chem. Soc., 2010, 132, 7508;
(d) R. Shintani, K. Moriya and T. Hayashi, Chem. Commun.,
2011, 47, 3057; (e) R. Shintani, T. Ito, M. Nagamoto, H.
Otomo and T. Hayashi, Chem. Commun., 2012, 48, 9936.
R. Shintani, T. Ito and T. Hayashi, Org. Lett., 2012, 14, 2410.
(a) H. Ito, Y. Kosaka, K. Nonoyama, Y. Sasaki and M.
Sawamura, Angew. Chem., Int. Ed., 2008, 47, 7424; (b) C.
Buyck, D. Courtheyn, L. Van Caenegem and N. Schamp, Bull.
Soc. Chim. Belg., 1983, 92, 371; (b) M. P. Cooke, Jr. and J. Y.
Jaw, J. Org. Chem., 1986, 51, 758; (c) E. Vilsmaier, R. Adam,
C. Tetzlaff and R. Cronauer, Tetrahedron, 1989, 45, 3683; (d)
H.-S. Jeon and S. Koo, Tetrahedron Lett., 2004, 45, 7023; (e)
T. den Hartog, A. Rudolph, B. Marciá, A. J. Minnaard and B. L.
Feringa, J. Am. Chem. Soc., 2010, 132, 14349; (f) A. Russo and
A. Lattanzi, Org. Biomol. Chem., 2011, 9, 7993.
4
5
Zhong, S. Kunii, Y. Kosaka, M. Sawamura and H. Ito, J. Am. 17 D. Veltwisch, E. Janata and K.-D. Asmus, J. Chem. Soc., Perkin
Chem. Soc., 2010, 132, 11440; (c) L. Amenós, L. Trulli, L. Trans. 2, 1980, 146.
Nóvoa, A. Parra and M. Tortosa, Angew. Chem., Int. Ed., 18 W. D. Kumler and J. J. Eiler, J. Am. Chem. Soc., 1943, 65,
2019, 58, 3188. 2355.
6
(a) A. Kawachi, H. Maeda, H. Nakamura, N. Doi and K. 19 M. Weber, M. Weber and V. Weber, Phenol In Ullmann’s
Tamao, J. Am. Chem. Soc., 2001, 123, 3143; (b) R. Shintani, R.
Fujie, M. Takeda and K. Nozaki, Angew. Chem., Int. Ed., 2014,
53, 6546.
Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim,
Germany, 2020, p. 1.
7
8
B. Xu; L. Troian-Gautier, R. Dykstra, R. T. Martin, O. Gutierrez
and U. K. Tambar, J. Am. Chem. Soc., 2020, 142, 6206.
(a) A. H. Cowley and J. L. Mills, J. Am. Chem. Soc., 1969, 91,
2915; (b) J. M. Brown and A. R. Lucy, J. Organomet. Chem.,
1986, 314, 241; (c) G. A. Molander, J. P. Burke and P. J.
Carroll, J. Org. Chem., 2004, 69, 8062; (d) M. Rubina, W. M.
Sherrill and M. Rubin, Organometallics, 2008, 27, 6393; (e) A.
F. Khlebnikov, S. I. Kozhushkov, D. S. Yufit, H. Schill, M.
Reggelin, V. Spohr and A. de Meijere, Eur. J. Org. Chem.,
2012, 1530; (f) M. Rubina, W. M. Sherrill, A. Y. Barkov and M.
Rubin, Beilstein J. Org. Chem., 2014, 10, 1536.
9
V. Devreux, J. Wiesner, J. L. Goeman, J. V. der Eycken, H.
Jomaa and S. V. Calenbergh, J. Med. Chem., 2006, 49, 2656.
10 (a) D. B. Denney and F. J. Gross, J. Org. Chem., 1967, 32,
2445; (b) G. F. Meijs, Tetrahedron Lett., 1985, 26, 105.
11 (a) M. Rubina, E. W. Woodward and M. Rubin, Org. Lett.,
2007, 9, 5501; (b) B. K. Alnasleh, W. M. Sherrill and M. Rubin,
Org. Lett., 2008, 10, 3231.
12 (a) H. Schmidbaur, S. Manhart and A. Schier, Chem. Ber.,
1993, 126, 2259; (b) R. P. Reddy, G. H. Lee and H. M. L.
Davies, Org. Lett., 2006, 8, 3437; See also: (c) F.-G. Klärner, A.
E. Kleine, D. Oebels and F. Scheidt, Tetrahedron: Asymmetry,
1993, 4, 479; (d) P. Woznicki, E. Korzeniowska and M.
Stankevic, J. Org. Chem., 2017, 82, 10271.
13 For recent examples of allylic substitution reactions with
phosphorus nucleophiles: (a) F. Liron and P. Knochel, Chem.
Commun., 2004, 304; (b) P. Butti, R. Rochat, A. D. Sadow and
A. Togni, Angew. Chem., Int. Ed., 2008, 47, 4878; (c) A.
Duraud, O. Jacquet, J.-C. Fiaud, R. Guillot and M. Toffano,
ChemCatChem, 2011, 3, 883; (d) L. Zhang, W. Liu and X.
Zhao, Eur. J. Org. Chem., 2014, 6846; (e) A. Fers-Lidou, O.
Berger and J.-L. Montchamp, Molecules, 2016, 21, 1295; (f)
X. Wo, P. Xie, W. Fu, C. Gao, Y. Liu, Z. Sun and T.-P. Loh,
Chem. Commun. 2018, 54, 11132.
14 For the comparison between phosphorus and silicon
nucleophiles, the reaction of 1a with LiSiMe2Ph in THF at 0 °C
gave the silylative cyclopropanation product selectively over
allylic substitution (97/3) in the absence of HMPA (see ESI for
details), indicating that a silyllithium is more nucleophilic
than
a
lithium phosphide, and HMPA presumably
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins