Article
Journal of Medicinal Chemistry, 2010, Vol. 53, No. 6 2519
(Mþ, 5), 252 (bp), 129 (20), 115 (20), 70 (25). 1H NMR (300 MHz,
CDCl3) δ ppm 0.96 (t, J = 7.3 Hz, 3 H), 1.53-1.64 (m, 2 H), 1.89
(dd, J= 9.6, 3.54 Hz, 4 H), 2.03-2.14(m, 2H), 2.31-2.41(m, 2H),
2.64(ddd,J= 15.4, 5.7, 5.5 Hz, 1 H), 3.06-3.15(m,5H),7.51-7.58
(m, 2 H), 7.78-7.86 (m, 2 H). 13C NMR (75 MHz, CDCl3) δ ppm
11.98, 20.18, 33.29, 42.59, 44.43, 54.06, 60.93, 124.99, 125.74, 129.39,
132.04, 148.28. The amine was converted to the HCl salt and
recrystallized in EtOH/diethyl ether: mp 212-214 °C. Anal.
(C15H24ClNO2S) C, H, N.
Spangler, T.; Brennan, J. A.; Piesla, M.; Mazandarani, H.; Cockett,
M. I.; Ochalski, R.; Coupet, J.; Andree, T. H. New generation
dopaminergic agents. 1. Discovery of a novel scaffold which
embraces the D2 agonist pharmacophore. Structure-activity re-
lationships of a series of 2-(aminomethyl)chromans. J. Med. Chem.
1997, 40, 4235–4256.
(12) Clark, D.; Hjort, S.; Carlsson, A. Dopamine receptor agonists:
mechanisms underlying autoreceptor selectivity II. Theoretical
considerations. J. Neural Transm. 1985, 62, 171–207.
(13) Casey, D. E.; Keepers, G. A. Neuroleptic side effects: acute
extrapyramidal syndromes and tardive dyskinesia. Psychopharma-
col. Ser. 1988, 5, 74–93.
(14) Lahti, A. C.; Weiler, M. A.; Corey, P. K.; Lahti, R. A.; Carlsson,
A.; Tamminga, C. A. Antipsychotic properties of the partial
dopamine agonist (-)-3-(3-hydroxyphenyl)-N-n-propylpiperidine
(preclamol) in schizophrenia. Biol. Psychiatry 1998, 43, 2–11.
(15) Petrie, J. L.; Saha, A. R.; McEvoy, J. P. Aripiprazole, a new
atypical antipsychotic: phase II clinical trial results. Eur. Neuro-
psychopharmacol. 1997, 7, 227.
(16) Carlsson, A.; Tamminga, C. A. Partial dopamine agonists and
dopaminergic stabilizers, in the treatment of psychosis. Curr. Drug
Targets: CNS Neurol. Disord. 2002, 1, 141–147.
Acknowledgment. We thank Maria Gullme, Anna Sandahl,
˚
Mikael Andersson, and Hakan Schyllander for help with
the synthetic chemistry, and Elisabeth Ljung, Marianne
€
Thorngren, Kirsten Sonniksen, Theresa Andreasson, Boel
Svanberg, and Therese Carlsson for their work with beha-
ꢀ
vioral and neurochemical experiments and analyses. We also
thank Tino Dyhring and Elsebet Østergaard Nielsen for
providing the in vitro functional data (fluorescent imaging
plate reader), and Anna-Carin Jansson, Lars Swanson, and
Peder Svensson for their help in producing LClogD values.
For performance of calculations of Ki values and statistics, we
thank Andreas Stansvik and Ylva Sunesson. For review of
the manuscript, we thank Jonas Karlsson, Peder Svensson,
Naheed Mirza, Kristina Luthman, and Palle Christophersen.
(17) Broadley, K. J.; Kelly, D. R. Muscarinic receptor agonists and
antagonists. Molecules 2001, 6, 142–193.
(18) Esbenshade, T. A.; Fox, G. B.; Cowart, M. D. Histamine H3
receptor antagonists: preclinical promise for treating obesity and
cognitive disorders. Mol. Interventions 2006, 6, 77–88.
(19) Gualtieri, F. Cholinergic receptors and neurodegenerative
diseases. Pharm. Acta Helv. 2000, 74, 85–89.
(20) Kubinyi, H. Chemical similarity and biological activites. J. Braz.
Chem. Soc. 2002, 13, 717–726.
(21) Smith, J. H. Introduction to the Principles of Drug Design and
Action, 3rd ed.; Harwood Academic Publishers: London, 1998; pp
387-433.
Note Added after ASAP Publication. This paper was
published ASAP on February 15, 2010 with errors in Figures
5 and 6. The revised version was published on February 23,
2010.
(22) Parker, M. A.; Kurrasch, D. M.; Nichols, D. E. The role of lipo-
philicity in determining binding affinity and functional activity for
5-HT2A receptor ligands. Bioorg. Med. Chem. 2008, 16, 4661–4669.
(23) Runyon, S. P.; Mosier, P. D.; Roth, B. L.; Glennon, R. A.;
Westkaemper, R. B. Potential modes of interaction of 9-amino-
methyl-9,10-dihydroanthracene (AMDA) derivatives with the
5-HT2A receptor: a ligand structure-affinity relationship, recep-
tor mutagenesis and receptor modeling investigation. J. Med.
Chem. 2008, 51, 6808–6828.
Supporting Information Available: Experimental details of the
synthesis of 9a-12a; biological methods and methods of pre-
paring LClogD values. This material is available free of charge
(24) Ariens, E. J. Drug Design; Academic Press: New York, 1971; Vol. 1,
pp 162-193.
References
(25) Hansch, C.; Leo, A. Substituent Constants for Correlation Analysis
in Chemistry and Biology; Wiley: New York, 1979.
(1) Johnson, G. L.; Dhanasekaran, N. The G-protein family and their
interaction with receptors. Endocr. Rev. 1989, 10, 317–331.
(2) Seeman, P. Atypical antipsychotics: mechanism of action. Can. J.
Psychiatry 2002, 47, 27–38.
(3) Seeman, P. An Update of Fast-Off Dopamine D2 Atypical Anti-
psychotics. Am. J. Psychiatry 2005, 162, 1984–1985.
(4) George, S. R.; Watanabe, M.; Di Paolo, T.; Falardeau, P; Labrie,
F.; Seeman, P. The functional state of the dopamine receptor in the
anterior pituitary is in the high affinity form. Endocrinology 1985,
117, 690–697.
(5) Sibley, D. R.; De Lean, A.; Creese, I. Anterior pituitary dopamine
receptors. Demonstration of interconvertible high and low affinity
states of the D-2 dopamine receptor. J. Biol. Chem. 1982, 257,
6351–6361.
(26) Cho, W.; Taylor, L. P.; Mansour, A.; Akil, H. Hydrophobic
residues of the D2 dopamine receptor are important for binding
and signal transduction. J. Neurochem. 1995, 65, 2105–2215.
(27) Cox, B. A.; Henningsen, R. A.; Spanoyannis, A.; Neve, R. L.;
Neve, K. A. Contributions of conserved serine residues to the
interactions of ligands with dopamine D2 receptors. J. Neurochem.
1992, 59, 627–635.
(28) Mansour, A.; Meng, F.; Meador-Woodruff, J. H.; Taylor, L. P.;
Civelli, O.; Akil, H. Site-directed mutagenesis of the human
dopamine D2 receptor. Eur. J. Pharmacol. 1992, 227, 205–214.
(29) Shi, L.; Javitch, J. A. The binding site of aminergic G protein-
coupled receptors: the transmembrane segments and second extra-
cellular loop. Annu. Rev. Pharmacol. Toxicol. 2002, 42, 437–467.
(30) Teeter, M. M.; Froimowitz, M.; Stec, B.; DuRand, C. J. Homology
modeling of the dopamine D2 receptor and its testing by docking of
agonists and tricyclic antagonists. J. Med. Chem. 1994, 37, 2874–2888.
(31) Wiens, B. L.; Nelson, C. S.; Neve, K. A. Contribution of serine
residues to constitutive and agonist-induced signaling via the D2S
dopamine receptor: evidence for multiple, agonist-specific active
conformations. Mol. Pharmacol. 1998, 54, 435–444.
(32) Wilcox, R. E.; Huang, W.-H.; Brusniak, M.-Y. K.; Wilcox, D. M.;
Pearlman, R. S.; Teeter, M. M.; DuRand, C. J.; Wiens, B. L.; Neve,
K. A. CoMFA-based prediction of agonist affinities at recombi-
nant wild type versus serine to alanine point mutated D2 dopamine
receptors. J. Med. Chem. 2000, 43, 3005–3019.
(33) Yashar, M.; Kalani, S.; Vaidehi, N.; Hall, S. E.; Trabanino, R. J.;
Freddolino, P. L.; Kalani, M. A.; Floriano, W. B.; Tak Kam,
V. W.; Goddard, W. A., III. The predicted 3D structure of the
human D2 dopamine receptor and the binding site and binding
affinities for agonists and antagonists. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 3815–3820.
(6) Payne, S. L.; Johansson, A. M.; Strange, P. G. Mechanisms of
ligand binding and efficacy at the human D2(short) dopamine
receptor. J. Neurochem. 2002, 82, 1106–1117.
(7) Seeman, P.; Tallerico, T.; Ko, F. Dopamine displaces [3H]domperi-
done from high-affinity sites of the dopamine D2 receptor, but
not [3H]raclopride or [3H]spiperone in isotonic medium: implica-
tions for human positron emission tomography. Synapse 2003, 49,
209–215.
(8) Kenakin, T. Collateral efficacy in drug discovery: taking advantage
of the good (allosteric) nature of 7TM receptors. Trends Pharma-
col. Sci. 2007, 28, 407–415.
(9) Lahti, R. A.; Figur, L. M.; Piercey, M. F.; Ruppel, P. L.; Evans,
D. L. Intrinsic activity determinations at the dopamine D2 guanine
nucleotide-binding protein-coupled receptor: utilization of recep-
tor state binding affinities. Mol. Pharmacol. 1992, 42, 432–439.
˚
(10) Malmberg, A.; Mohella, N.; Backlund Hook, B.; Johansson,
€€
A. M.; Hacksell, U.; Nordvall, G. Interactions of ligands with
active and inactive conformations of the dopamine D2 receptor.
Eur. J. Pharmacol. 1998, 346, 299–307.
(34) Vilardaga, J.-P. Switching modes for G protein-coupled receptor
activation. Nat. Chem. 2006, 2, 395–396.
(35) Ballesteros, J. A.; Jensen, A. D.; Liapakis, G.; Rasmussen, S.; Shi,
L.; Gether, U.; Javitch, J. A. Activation of the 2-adrenergic
(11) Mewshaw, R. E.; Kavanagh, J.; Stack, G.; Marquis, K. L.; Shi, X.;
Kagan, M. Z.; Webb, M. B.; Katz, A. H.; Park, A.; Kang, Y. H.;
Abou-Gharbia, M.; Scerni, R.; Wasik, T.; Cortes-Burgos, L.;