16 which were consistent with those expected for a C3-
symmetric polymacrocycle. Most notably, two singlet peaks at
1
d 8.13 and d 8.11 were observed in the H NMR spectrum
corresponding to the two sets of thiazole protons. Additionally,
NMR signals were observed relating to the amide N–H (d 8.47
and d 8.43) and the a-carbon protons (d 5.68 and d 5.58) within
the macrocyclic rings.
A corresponding condensation between the -glutamic acid
L
trimer 4b and tris(aminoethyl)amine 17 in the presence of
FDPP–Pr2NEt led to isolation of the cage structure 18, also as a
solid, in 40% yield.‡ Again, mass spectrometry established that
formation of the desired monomer had occurred. Additionally,
1
the H NMR spectrum confirmed the structure of 18 as C3-
symmetric with peaks at d 8.89 and d 8.11 relating to the ring
N–H and thiazole protons with a signal at d 6.26 corresponding
to the three side-chain amide protons. The applications of the
C3-symmetric cyclic trimers 4a and 4b and their relatives in
asymmetric and library synthesis, and also in molecular
recognition phenomena, will be described in future publica-
tions.
We thank Dr Luis Castro for his interest in this study and
Merck Sharp and Dohme for financial assistance. We also thank
Dr Kate Jolliffe for preliminary work with the synthesis of the
Scheme 2 Reagents and conditions: i, (Boc)2O, Et3N, THF–H2O, 24 h,
90%; ii, HOBt, EDCI·HCl, NMM, CH2Cl2, 0 °C, 30 min, then DL-serine
benzyl ester benzenesulfonate, NMM, 0 °C ? RT, 48 h, 94%; iii,
TBDMSCl, Et3N, DMAP, CH2Cl2, 14 h, 86%; iv, Lawesson’s reagent,
C6H6, 80 °C, 14 h, 94%; v, TBAF, THF, 0 °C, 3 h, 91%; vi, Burgess’
reagent, THF, 65 °C, 30 min; vii, CBrCl3, DBU, CH2Cl2, 0 °C, 4 h, 63%
over two steps; viii, NH4HCO2, 10% Pd/C, EtOH, 78 °C, 24 h, 70%; ix, 2 M
HCl, dioxane, 24 h, 60%.
L
-ornithine thiazole.
Notes and references
294
† 16: mp 236–237 °C (decomp.) (from CHCl3–MeOH–Et2O); [a]D
238.4° [c = 0.5, (CHCl3–MeOH 3:1)]; IR (cm21): 3401, 3007, 2930, 1668,
1541; dH (500 MHz, CDCl3) 8.47 (3H, m), 8.43 (3H, dd, J = 8.1 and 3.0
Hz), 8.13 (3H, s), 8.11 (3H, s), 5.68 (3H, m), 5.58 (3H, m), 3.67–3.01 (6H,
m), 2.68–2.32 (9H, m), 2.31–2.12 (9H, m), 2.02–1.91 (3H, m), 1.57–1.51
(3H, m); dC [125 MHz, (CDCl3)] 173.2 (s), 169.7 (s), 159.7 (s), 159.6 (s),
148.8 (s), 148.7 (s), 124.4 (d), 124.3 (d), 51.4 (d), 50.4 (d), 39.7 (t), 35.9 (t),
34.3 (t), 32.0 (t), 25.9 (t); HRMS (ES) m/z 1196.2198; calcd. for
C
48H51S6N15O9Na ([M + Na]+): 1196.2216.
‡ 18: mp 281–282 °C (decomp.) (from CHCl3–MeOH–Et2O); [a]D
Scheme 3 Reagents and conditions: i, FDPP, i-Pr2NEt, DMF, (15a 3 d,
11%; 15b 9 d, 41%); ii, 33% HBr–AcOH, 6 h, 77%; iii, NaOH, THF–H2O,
12 h, 98%.
294
226.4° [c = 0.5, (CHCl3–MeOH 3:1)]; IR (cm21): 3399, 3007, 1672, 1543;
dH (360 MHz, CDCl3) 8.89 (3H, d, J = 9.5 Hz), 8.11 (3H, s), 6.26 (3H, br
s), 5.94 (3H, d, J = 9.1 Hz), 3.40 (3H, m), 3.12 (3H, m), 2.67–2.41 (12H,
m), 2.32–2.24 (3H, m), 2.18–2.08 (3H, m); dC [90.5 MHz, (CDCl3–CD3OD
9+1)] 173.0 (s), 167.8 (s), 159.3 (s), 148.8 (s), 123.8 (d), 53.0 (t), 48.5 (d),
37.0 (t), 31.8 (t), 28.9 (t); HRMS (ES) m/z 751.1917; calcd. for
C30S3N10O6H36Na ([M + Na]+): 751.1879.
1 Y. Hamamoto, M. Endo, T. Nakagawa, T. Nakanishi and K. Mizukawa,
J. Chem. Soc., Chem. Commun., 1983, 323.
2 D. J. Baume, B. F. Bowden, A. R. Carroll, J. C. Coll, C. M. Ireland, J. K.
MacLeod and T. M. Zabriskie, Aust. J. Chem., 1996, 49, 659.
3 J. P. Michael and G. Pattenden, Angew. Chem., Int. Ed. Engl., 1993, 32,
1.
4 A. Bertram, J. S. Hannam, K. A. Jolliffe, F. González-Lopez de Turisó
and G. Pattenden, Synlett, 1999, 1723; A. J. Blake, J. S. Hannam, K. A.
Jolliffe and G. Pattenden, Synlett, 2000, 1515.
5 A. Bertram and G. Pattenden, Synlett, 2000, 1519.
6 For contemporaneous studies see: D. Mink, S. Mecozzi and J. Rebek,
Jr., Tetrahedron Lett., 1998, 39, 5709; G. Haberhauer, L. Samogyi and
J. Rebek, Jr., Tetrahedron Lett., 2000, 41, 5013.
7 For contemporaneous studies see: T. D. Clark, L. K. Buehler and M. R.
Ghadiri, J. Am. Chem. Soc., 1998, 120, 651.
8 Following completion of this manuscript, complementary related
studies were described by Fairlie et al.: Y. Singh, N. Sokolenko, M. J.
Kelso, L. R. Gahon. G. Abbenante and D. P. Fairlie, J. Am. Chem. Soc.,
2001, 123, 333.
9 M. W. Bredenkamp, C. W. Holzapfel and W. J. van Zyl, Synth
Commun., 1990, 20, 2235; E. Aguilar and A. I. Meyers, Tetrahedron
Lett., 1994, 35, 2473.
10 Enantiomeric excess was determined by 19F NMR spectroscopy
following Boc deprotection and formation of the respective Mosher’s
amides: H. S. Mosher and J. A. Dale, J. Am. Chem. Soc., 1973, 95,
512.
11 P. Wipf and P. C. Fritch, Tetrahedron Lett., 1994, 35, 5397.
12 D. R. Williams, P. D. Lowder, Y. G. Gu and D. A. Brooks, Tetrahedron
Lett., 1997, 38, 331.
Scheme 4 Reagents and conditions: i, FDPP, i-Pr2NEt, 4a, DMF, 10 d,
30%; ii, FDPP, i-Pr2NEt, 17, DMF, 3 d, 40%.
13 T. Bieg and W. Szeja, Synthesis, 1985, 76.
718
Chem. Commun., 2001, 717–718