RSC Advances
Page 4 of 5
DOI: 10.1039/C3RA43368D
Table 4 Amidation of various halogenoꢀheteroaromatics
Acknowledgements
CuI (5 mol%)
L (5 mol%)
N
N
20 Janssen Research & Development, a Division of JanssenꢀCilag, is
gratefully acknowledged for financial support.
H2N
Ph
X +
NH
O
K2CO3 (2 equiv)
1,4 dioxane, 170 °C
24 h
Ph
A
A
O
(1.5 equiv)
Notes and references
a Laboratoire de Chimie Organique, ESPCI ParisTech, UMR CNRS 7084,
10, rue Vauquelin, 75231 Paris Cedex 05, France.
Entrya,b Halogenopyridine
Product
Yieldc
92%
H
N
Cl
N
N
Ph
25 e-mail : janine.cossy@espci.fr;sebastien.reymond@espci.fr
Fax : (+33)140794660 ; Tel : (+33)140794659.
1
2
3
O
b Janssen Research & Development, a division of Janssen-Cilag, BP615-
Chaussée du Vexin, 27106 Val de Reuil-France.
MeO
MeO
N
Cl
c Janssen Research & Development, a division of Janssen Pharmaceutica
30 N.V. Turnhoutsweg 30, 2340 Beerse, Belgium.
ꢀ
ꢀ
OMe
Cl
H
N
N
N
Ph
† Electronic Supplementary Information (ESI) available: Experimental
procedures, spectroscopic data and NMR spectra for amide compounds.
See DOI: 10.1039/b000000x/
45%d
O
Cl
Cl
35
H
N
N
Cl
Cl
1 C. Ni, M. Park, B. Shao, L. Tafesse, J. Yao, M. Youngman, X. Zhou,
WO 2012/085650 A1, 2012.
N
Ph
4
32%e
O
2 The stoichiometric amidation of 2ꢀamino heterocycles is not always an
obvious reaction because of their low nucleophilicity. For examples, see:
40 a) A. R. Katritzky, H. ꢀY. He, K. Suzuki, J. Org. Chem., 2000, 65, 8210.
b) A. R. Katritzky, B. ElꢀDien M. ElꢀGendy, E. Todadze, A. A. A. Abdelꢀ
Fattah., J. Org. Chem., 2008, 73, 5442. c) K. Kim, K. Le, Synlett, 1999,
1957.
Cl
N
Cl
H
N
N
Ph
O
5
6
32%f
21%f
3 a) Topics in Organometallic Chemistry, Metal-catalyzed C(sp2)-N bond
45 Formation, A. Correa, C. Bolm, Springer: Berlin, Heidelberg, 2013. b)
Topics in Organometallic Chemistry, Assembly of N-Containing
Heterocycles via Pd- and Cu-Catalyzed C–N Bond Formation Reactions,
Y. Jiang, D. Ma, Springer: Berlin, Heidelberg, 2013. c) I. P. Beletskaya,
A. V. Cheprakov, Organometallics, 2012, 31, 7753.
50 4 For reviews on Pdꢀcatalysed CꢀN bond formations, see: a) J. F. Hartwig,
Nature, 2008, 455, 7211. b) de Meijere, A., Diederich, F., Eds. Metal-
Catalyzed Cross-Coupling Reactions, 2nd ed.; WileyꢀVCH: Weinheim,
2004. c) R. J. Lundgren, M. Stradiotto, Chem. Eur. J., 2012, 18, 9758. d)
E. M. Beccalli, G. Broggini, M. Martinelli, S. Sottocornola, Chem. Rev.,
55 2007, 107, 5318.
Ph
O
NH
I
O
H
N
Cl
N
N
Ph
O
Br
Ph
N
H
N
ꢀ
7
8
ꢀ
Cl
Cl
H
N
N
N
5 For reviews on Cuꢀcatalysed CꢀN bond formations, see: a) G. Evano, N.
Blanchard, T. Toumi, Chem. Rev., 2008, 108, 3054. b) I. P. Beletskaya,
A. V. Cheprakov, Coord. Chem. Rev., 2004, 248, 2337. c) F. Monnier, M.
Taillefer, Angew. Chem., Int. Ed., 2009, 48, 6954.
N
N
Ph
O
67%
O
H
N
N
Cl
60 6 For some examples, see : a) Q. Shen, S. Shekhar, J. P. Stambuli, J. F.
Hartwig, Angew. Chem., Int. Ed., 2005, 44, 1371. b) F. Halley, Y. Elꢀ
Ahmad, V. Certal, C. Venot, A. Dagallier, H. Strobel, K. Ritter, S. Ruf,
US 2009/0082329 A1, 2009. c) N. R. Irlapati, G. K. Deshmukh, V. P.
Karche, S. M. Jachak, N. Sinha, V. P. Palle, R. K. Kamboj, WO
65 2012/056478 A1, 2012. d) S. Guo, Y. Wang, C. Sun, J. Li, D. Zhou, Y.
Wu, Y. Wu, Tetrahedron Lett., 2013, 54, 3233. e) H. Kakuta, X. Zheng,
H. Oda, S. Harada, Y. Sugimoto, K. Sasaki, A. Tai, J. Med. Chem., 2008,
51, 2400. f) B. Wu, , K. Kuhen, T. Ngoc Nguyen, D. Ellis, B. Anaclerio,
X. He, K. Yang, D. Karanewsky, H. Yin, K. Wolff, K. Bieza, J. Caldwell,
70 Y. He, Bioorg. Med. Chem. Lett., 2006, 16, 3430. g) G. B. W. L. Ligthart,
H. Ohkawa, R.P. Sijbesma, E. W. Meijer, J. Org. Chem., 2006, 71, 375.
h) D. Doller, G. Li, G. Ma, H. Zhou, US 2011/0098299 A1, 2011. i) P. ꢀS.
Wang, C. ꢀK. Liang, M. ꢀk. Leung, Tetrahedron, 2005, 61, 2931.
7 For examples of Cuꢀcatalysed amidation of arylꢀhalides, see : a) A.
75 Klapars, J. C. Antilla, X. Huang, S. L. Buchwald, J. Am. Chem. Soc.,
2001, 123, 7727. b) K. R. Crawford, A. Padwa, A., Tetrahedron Lett.,
2002, 43, 7365. c) S. K. Kang, D. H. Kim, J. N. Park, Synlett, 2002, 427.
d) A. Klapars, X. Huang, S. L. Buchwald, J. Am. Chem. Soc., 2002, 124,
7421. e) W. Deng, Y. ꢀF. Wang, Y. Zou, L. Liu, Q.ꢀX. Guo, Tetrahedron
80 Lett., 2004, 45, 2311. f) E. R. Strieter, D. G. Blackmond, S. L. Buchwald,
J. Am. Chem. Soc., 2005, 127, 4120. g) W. Chen, J. Li, D. Fang, C. Feng,
C. Zhang, Org. Lett., 2008, 10, 4565. h) E. R.Strieter, B. Bhayana, S. L.
Buchwald, J. Am. Chem. Soc., 2009, 131, 78. i) P. F.Larsson, A. Correa,
M. Carril, P. O. Norrby, C. Bolm, C, Angew. Chem., Int. Ed., 2009, 48,
85 5691. j) S. Jammi, S. Krishnamoorthy, P. Saha, D. S. Kundu, S.
N
Ph
9
88%
a c = 1 M; b reaction performed in a sealed tube; c isolated yield; d
e
25% of starting material recovered; 28% of starting material
5
recovered; f Only traces of monoꢀamide product were observed.
corresponding amides were produced in 67% and 88% yield
respectively (Table 3, entries 8ꢀ9).
Conclusions
10
In summary, we have described a straightforward method for
the amidation of 2ꢀchloropyridine derivatives with a cheap and
convenient CuI/N,Nꢀdimethylcyclohexaneꢀ1,2ꢀdiamine catalytic
system, which constitutes an interesting alternative to both the
reported Pdꢀcentered methods and Cuꢀcatalysed amidations of
15 2ꢀbromoꢀpyridine derivatives. This CꢀN bond formation is
general and can involve aromatic, heteroaromatic or aliphatic
amides, and various pyridine derivatives such as 2ꢀchloroꢀ
pyridines, as well as 2ꢀchloropyrazine and 2ꢀchloroquinoline.
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3