D
M. Nambo et al.
Letter
Synlett
hedron 2006, 62, 6731. For selected examples, see: (e) Panda, G.;
Parai, M. K.; Das, S. K.; Shagufta Sinha, M.; Chaturvedi, V.;
Srivastava, A. K.; Manju, Y. S.; Gaikwad, A. N.; Sinha, S. Eur. J.
Med. Chem. 2007, 42, 410. (f) Rueping, M.; Nachtsheim, B. J.
Beilstein J. Org. Chem. 2010, 6, 6. (g) Vernekar, S. K. V.; Liu, Z.;
Nagy, E.; Miller, L.; Kirby, K. A.; Wilson, D. J.; Kankanala, J.;
Sarafianos, S. G.; Parniak, M. A.; Wang, Z. J. Med. Chem. 2015, 58,
651.
10 mol% TfOH
2 equiv DDQ
a)
Ph
Ph
Ph
Ph
H
OH
DCE/H2O = 5:1 (0.33 M)
100 °C, 6 h
Ph
Ph
1a
55% yield (GC)
10 mol% TfOH
2 equiv DDQ
b)
Ph
MeO
OMe
Ph
DCE (0.33 M)
100 °C, 6 h
(no conversion)
(2) For recent advances for the synthesis of polyarylated alkanes by
transition-metal catalysis, see: (a) Harris, M. R.; Hanna, L. E.;
Greene, M. A.; Moore, C. E.; Jarvo, E. R. J. Am. Chem. Soc. 2013,
135, 3303. (b) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science
2014, 345, 433. (c) Mondal, S.; Panda, G. RSC Adv. 2014, 4,
28317. (d) Nambo, M.; Crudden, C. M. ACS Catal. 2015, 5, 4734.
(e) Zhou, Q.; Cobb, K. M.; Tan, T.; Watson, M. P. J. Am. Chem. Soc.
2016, 138, 12057.
Ph
3a
Ph
H
OMe
10 mol% TfOH
2 equiv DDQ
Ph
DCE (0.33 M)
100 °C, 6 h
(86%)
4a
H
5a
2a (5 equiv)
(3) (a) Witten, B.; Reid, E. E. Org. Synth. Coll. Vol. IV; Wiley: London,
1963, 47. (b) Gibson, H. W.; Lee, S.-H.; Engen, P. T.; Lecavalier,
P.; Sze, J.; Shen, Y. X.; Bheda, M. J. Org. Chem. 1993, 58, 3748.
(c) Choudhury, J.; Podder, S.; Roy, S. J. Am. Chem. Soc. 2005, 127,
6162. (d) McCubbin, J. A.; Krokhin, O. V. Tetrahedron Lett. 2010,
51, 2447. (e) Sato, Y.; Aoyama, T.; Takido, T.; Kodomari, M. Tetra-
hedron 2012, 68, 7077.
(4) (a) Neugebauer, F. A.; Fischer, H.; Bernhardt, R. Chem. Ber. 1976,
109, 2389. (b) Grimm, M.; Kirste, B.; Kurrek, H. Angew. Chem. Int.
Ed. Engl. 1986, 25, 1097. (c) Su, D.; Menger, F. M. Tetrahedron
Lett. 1997, 38, 1485. (d) Zimmermann, T. J.; Müller, T. J. J.
Synthesis 2002, 1157. (e) Watanabe, N.; Matsugi, A.; Nakao, K.;
Ichikawa, Y.; Kotsuki, H. Synlett 2014, 25, 438.
(5) (a) Schoepfle, C. S.; Trepp, S. G. J. Am. Chem. Soc. 1936, 58, 791.
(b) Reetz, M. T.; Wenderoth, B.; Peter, R.; Steinbach, R.;
Westermann, J. J. Chem. Soc., Chem. Commun. 1980, 1202.
(c) Matsumoto, K.; Kannami, M.; Oda, M. Tetrahedron Lett. 2003,
44, 2861. (d) Kurata, H.; Oki, Y.; Matsumoto, K.; Kawase, T.; Oda,
M. Chem. Lett. 2005, 34, 910.
(6) Niwa, T.; Yorimitsu, H.; Oshima, K. Org. Lett. 2007, 9, 2373.
(7) Zhang, S.; Kim, B.-S.; Wu, C.; Mao, J.; Walsh, P. J. Nat. Commun.
2017, 8, 14641.
Scheme 4 Control experiments
Ar1
Ar2
HOTf
O
H
Ar3
OH
Cl
Cl
CN
1
Cl
Cl
CN
DDQ
TfOH
CN
CN
O
OH
Ar
H
Ar2
OTf
Ar1
Ar3
– TfOH
5
A
Ar Ar4
OTf
Ar1
Ar1
Ar2
Ar4
H
H
Ar4
Ar2
Ar3
Ar3
4
3
Scheme 5 Proposed catalytic cycle for the cross-dehydrogenative cou-
pling
(8) Gartia, Y.; Biswas, A.; Stadler, M.; Nasini, U. B.; Ghosh, A. J. Mol.
Catal. A: Chem. 2012, 363–364, 322.
(9) (a) Nambo, M.; Crudden, C. M. Angew. Chem. Int. Ed. 2014, 53,
742. (b) Nambo, M.; Yar, M.; Smith, J. D.; Crudden, C. M. Org.
Lett. 2015, 17, 50. (c) Nambo, M.; Ariki, Z. T.; Canseco-Gonzalez,
D.; Beattie, D. D.; Crudden, C. M. Org. Lett. 2016, 18, 2339.
(d) Nambo, M.; Keske, E. C.; Rygus, J. P. G.; Yim, J. C.-H.; Crudden,
C. M. ACS Catal. 2017, 7, 1108.
(10) For reviews, see: (a) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
(b) Scheuermann, C. J. Chem. Asian J. 2010, 5, 436. (c) Yeung, C.
S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (d) Liu, C.; Yuan, J.;
Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Chem. Rev. 2015, 115,
12138. (e) Gini, A.; Brandhofer, T.; Mancheño, O. G. Org. Biomol.
Chem. 2017, 15, 1294.
a JSPS postdoctoral fellowship for research in Japan (16F16749). We
also thank JSPS and NU for funding this research through The World
Premier International Research Center Initiative (WPI) program
a
Jp
a
n
S
o
ecity
o
f
r
hte
P
or
m
o
itn of
S
ecin
c
e
2(
6
8
1
0
0
5
6aJ)p
a
n
S
o
ecity
o
f
r
hte
P
or
m
o
itn of
S
ecin
c
e
1(
7
K
1
7
8
0
5aJ)p
a
n
S
o
ecity
o
f
r
hte
Pro
m
o
itn of
S
ecin
c
e
1(
6
F
1
6
7
4
9)
Acknowledgment
We thank Dr. Yasutomo Segawa for assistance with the X-ray crystal-
structure analysis.
Supporting Information
(11) For examples of reactions of trityl cation with arenes, see:
(a) Sugihara, Y.; Saito, J.; Murata, I. Angew. Chem., Int. Ed. Engl.
1991, 30, 1174. (b) Kusuhara, N.; Sugano, Y.; Takagi, H.; Miyake,
H.; Yamamura, K. Chem. Commun. 1997, 1951. (c) Lv, J.; Zhang,
Q.; Zhong, X.; Luo, S. J. Am. Chem. Soc. 2015, 137, 15576.
(12) For recent examples of cross-dehydrogenative coupling using
DDQ, see: (a) Li, Y.-Z.; Li, B.-J.; Lu, X.-Y.; Lin, S.; Shi, Z.-J. Angew.
Chem. Int. Ed. 2009, 48, 3817. (b) Liu, H.; Cao, L.; Sun, J.; Fossey, J.
S.; Deng, W.-P. Chem. Commun. 2012, 48, 2674. (c) Ma, Y.;
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
References and Notes
(1) For reviews, see: (a) Duxbury, D. F. Chem. Rev. 1993, 93, 381.
(b) Ma, J. C.; Dougherty, D. A. Chem. Rev. 1997, 97, 1303.
(c) Shchepinov, M. S.; Korshun, V. A. Chem. Soc. Rev. 2003, 32,
170. (d) Nair, V.; Thomas, S.; Mathew, S. C.; Abhilash, K. G. Tetra-
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–E