582 J ournal of Medicinal Chemistry, 2002, Vol. 45, No. 3
Uehling et al.
(b) Himms-Hagen, J .; Melnyk, A.; Zingaretti, M. C.; Ceresi, E.;
Barbatelli, G.; Cinti, S. Multiocular fat cells in WAT of CL-
316,243-treated rats derive directly from white adipocytes. Am.
J . Physiol. Cell Physiol. 2000, 279, C670-C681.
mL/kg) or the test compound (10 mL/kg (volume), 1 mg/kg,
0.1 mg/kg, and 0.01 mg/kg (concentration)). The mice were
placed in a manifold with nose ports for continual delivery of
isoflurane. To maintain body core temperature during scan-
ning, the rodents were placed on a tightly regulated heating
table (37 ( 0.1 °C). The heating table was housed in an
isothermal, nonreflective chamber (24 ( 0.1 °C, 50% relative
humidity). Upon closure of the chamber door, heat emissions
from the areas of interest were acquired using a high-
resolution InSb IR scanning detector (AGEMA Thermovision
900, Thermogenic Imaging, Billerica, MA) mounted 30 cm
above the area of interest. Images were recorded at 1 min
intervals for 5 min. A frame-averaging rate of 16 frames per
second was used for each designated time point. Acquired
images were analyzed for average temperatures using a
GlaxoWellcome (RTP, NC) image-processing software applica-
tion (RoboImage). Data were expressed as either average
temperature per area or the change in temperature per area
(drug treated minus vehicle treated). The data were calculated
as the mean and standard error of the mean from experiments
performed on 8-10 animals per treatment group. Two tailed
t-tests were performed to calculate P values. Correlation
coefficients were determined by regression analysis using
Sigma Plot.
(14) Fisher, M. H.; Amend, A. M.; Bach, T. J .; Barker, J . M.; Brady,
E. J .; Candelore, M. R.; Carrol, D.; Cascieri, M. A.; Chiu, S.-H.
L.; Deng, L.; Forrest, M. J .; Hegarty-Friscino, B.; Guan, X.-M.;
Hom, G. J .; Hutchins, J . E.; Kelly, L. J .; Mathvink, R. J .;
Metzger, J . M.; Miller, R. R.; Ok, H. O.; Parmee, E. R.;
Saperstein, R.; Strader, C. D.; Sterns, R. A.; Thompson, G. M.;
Tota, L.; Vicario, P. P.; Weber, A. E.; Woods, J . W.; Wyvratt, M.
J .; Zafian, P. T.; MacIntyre, D. E. A Selective Human â3
Adrenergic Receptor Agonist Increases Metabolic Rate in Rhesus
Monkeys. J . Clin. Invest. 1998, 101, 2387-2393.
(15) Krief, S.; Lonnqvist, F.; Raimbault, S.; Baude, B.; Van Spronsen,
A.; Arner, P.; Strosberg, A. D.; Ricquier, D.; Emorine, L. J . Tissue
Distribution of â3-Adrenergic Receptor mRNA in Man. J . Clin.
Invest. 1993, 91, 344-349.
(16) Chamberlain, P. D.; J ennings, K. H.; Paul, F.; Cordell, J .; Berry,
A.; Holmes, S. D.; Park, J .; Chambers, J .; Sennitt, M. V.; Stock,
M. J .; Cawthorne, M. A.; Young, P. W.; Murphy, G. J . The tissue
distribution of the human beta(3)-adrenoceptor studied using
amonoclonal antibody: Direct evidence of the beta(3)-adreno-
ceptor in human adipose tissue, atrium and skeletal muscle. Int.
J . Obes. 1999, 23 (10), 1057-1065.
(17) Strosberg, A. D. Association of beta(3)-adrenoceptor polymor-
phism with obesity and diabetes. Trends Pharmacol. Sci. 1997,
18, 449-454.
(18) (a) Zheng, W.; Nikulin, V. I.; Konkar, A. A.; Vansal, S. S.; Shams,
G.; Feller, D. R.; Miller, D. D. 2-Amino-4-benzyl-4,5,6,7-tetra-
hydrothiazolo[5,4-c]pyridines: Novel Selective â3-Adrenoceptor
Agonists. J . Med. Chem. 1999, 42, 2287-2294. (b) Parmee, E.
R.; Brockunier, L. L.; He, J .; Singh, S. B.; Candelore, M. R.;
Cascieri, M. A.; Deng, L.; Liu, Y.; Tota, L.; Wyvratt, M. J .; Fisher,
M. H.; Weber, A. E. Tetrahydroisoquinoline Derivatives Con-
Ack n ow led gm en t. The authors thank Mike Martin
for synthesizing intermediate 9 and Randy Rutkowski,
Robert J ohnson, and Peter Kitrinos for analytical sup-
port. The authors also gratefully acknowledge Mike
Foxton, Rich Green, and Barry Shearer for helpful
discussions.
taining
a Benzenesulfonamide Moiety as Potent, Selective
Human â3 Adrenergic Receptor Agonists. Bioorg. Med. Chem.
Lett. 2000, 10, 2283-2286.
Su p p or tin g In for m a tion Ava ila ble: HPLC traces of â3
agonists 35-49. This material is available free of charge via
the Internet at http://pubs.acs.org.
(19) Weber, A. E. â3-Adrenergic receptor agonists for the treatment
of obesity. Annu. Rep. Med. Chem. 1998, 33, 193-202.
(20) Mathvink, R. J .; Tolman, J . S.; Chitty, D.; Candelore, M. R.;
Cascieri, M. A.; Colwell, L. F., J r.; Deng, L.; Feeney, W. P.;
Forrest, M. J .; Hom, G. J .; MacIntyre, D. E.; Miller, R. R.;
Stearns, R. A.; Tota, L.; Wyvratt, M. J .; Fisher, M. H.; Weber,
A. E. Discovery of a Potent, Orally Biovailable â3 Adrenergic
Receptor Agonist, (R)-N-[4-[2-[[2-Hydroxy-2-(3-pyridinyl)ethyl]-
amino]ethyl]phenyl]-4-[4-[4-(trifluoromethyl)phenyl]thiazol-2-yl]-
benzenesulfonamide. J . Med. Chem. 2000, 43, 3832-3836.
(21) Howe, R.; Rao, B. S.; Holloway, B. R.; Stribling, D. J . Med. Chem.
1992, 35, 1751.
Refer en ces
(1) Collins, P.; Williams, G. Drug treatment of obesity: from past
failures to future sucesses? J . Clin. Pharmacol. 2001, 51, 13-
25.
(2) Arch, J . R. S.; Ainsworth, A. T. Thermogenic and antiobesity
activity of a novel â-adrenoceptor agonist (BRL 26830A) in mice
and rats. Am. J . Clin. Nutr. 1983, 38, 549-558.
(3) Arch, J . R. S.; Ainsworth, A. T.; Cawthorne, M. A.; Piercy, V.;
Sennitt, M. V.; Thody, V. E.; Wilson, C.; Wilson, S. Atypical
â-adrenoceptor on brown adipocytes as target for anti-obesity
drugs. Nature 1984, 309, 163-165.
(22) (a) Sher, P. M.; Mathur, A.; Fisher, L. G.; Wu, G.; Skwish, S.;
Michel, I. M.; Seiler, S. M.; Dickinson, K. E. Carboxyl-Promoted
Enhancement of Selectivity for the â3 Adrenergic Receptor.
Negative Charge of the Sulfonic Acid BMS-187413 Introduces
â3 Binding Selectivity. Bioorg. Med. Chem. Lett. 1997, 7, 1583-
1588. (b) Malamas, M. S.; Largis, E.; Gunawan, I.; Li, Z.; Tillett,
J .; Han, S. C.-H.; Mulvey, R. Potent, Selective Aminothiazoli-
dinediones Agonists of the Human â3 Adrenergic Receptor. Med.
Chem. Res. 2000, 10, 164-177.
(4) Howe, R. â3-Adrenergic Agonists. Drugs Future 1993, 18, 529-
549.
(5) Wilson, C.; Wilson, S.; Piercy, V.; Sennitt, M. V.; Arch, J . R. S.
The rat lipolytic â-adrenoceptor: Studies using novel â-adreno-
ceptor agonists. Eur. J . Pharmacol. 1984, 100, 309-319.
(6) Bloom, J . D.; Dutia, M. D.; J ohnson, B. D.; Wissner, A.; Burns,
M. G.; Largis, E. E.; Dolan, J . A.; Claus, T. H. Disodium (R,R)-
5-[2-[[2-(3-Chlorophenyl)-2-hydroxyethyl]-amino]propyl]-1,3-ben-
zodioxole-2,2-dicarboxylate (CL 316243). A Potent â-adrenergic
Agonist Virtually Specific for â3 Receptors. A Promising Anti-
diabetic and Antiobesity Agent. J . Med. Chem. 1992, 35, 3081-
3084.
(23) Foxton, M. W. Patent WO 9533724, 1995.
(24) Additional acid isosteres in the aniline phenethanolamine series
are described in the following. Hartley, C. D.; Carter, M. C.;
Foxton, M. W. Patent WO 9721666, 1997.
(25) Khalaj, A.; Shadnia, H.; Sharifzadeh, M. Synthesis, molecular
modeling and in vitro antibacterial activity of 4-amino-R-
hydroxybenzeneacetamides. Pharm. Pharmacol. Commun. 1998,
4, 373-376.
(26) Sucholeiki, I.; Lynch, V.; Phan, L.; Wilcox, C. S. Chemistry of
synthetic receptors and functional group arrays. 7. Molecular
armatures. Synthesis and structure of Troeger’s base analogues
derived from 4-, 2,4-, 3,4-, and 2,4,5-substituted aniline deriva-
tives. J . Org. Chem. 1988, 53, 98-104.
(27) Drummond, J . T.; J ohnson, G. Convenient Procedure for the
Preparation of Alkyl and Aryl Substituted N-(Aminoalkylacyl)-
sulfonamides. Tetrahedron Lett. 1988, 29, 1653-1656.
(28) Clark, R. D.; Caroon, J . M.; Isaac, N. E.; McClelland, D. L.;
Michel, A. D.; Petty, T. A.; Rosenkranz, R. P.; Waterbury, L. D.
Synthesis and pharmacological evaluation of N,N-di-N-propyl-
dopamine congeners containing phenolic bioisosteres. J . Pharm.
Sci. 1987, 76, 411-415.
(7) Lipworth, B. J . Clinical pharmacology of â3-adrenoceptors. Br.
J . Clin. Pharmacol. 1996, 42, 291-300.
(8) Weyer, C.; Tataranni, P. A.; Snitker, S.; Danforth, E., J r.;
Ravussin, E. Increase in Insulin Action and Fat Oxidation after
Treatment with CL 316243, a Highly Selective â3-Adrenoceptor
Agonist in Humans. Diabetes 1998, 47, 1555-1561.
(9) Emorine, L. J .; Marullo, S.; Briend-Sutren, M.-M.; Patey, G.;
Tate, K.; Delavier-Klutchko, C.; Strosberg, A. D. Molecular
Characterization of the Human â3-Adrenergic Receptor. Science
1989, 245, 1118-1121.
(10) Granneman, J . G.; Lahners, K. N.; Chaudhry, A. Molecular
Cloning and Expression of the Rat â3-Adrenergic Receptor. Mol.
Pharmacol. 1991, 40, 895-899.
(11) Nahamias, C.; Blin, N.; Elalouf, J .-M.; Mattei, M. G.; Strosberg,
A. D.; Emorine, L. J . Molecular characterization of the mouse
â3-adrenergic receptor: relationship with the atypical receptor
of adipocytes. EMBO J . 1991, 10, 3721-3727.
(12) Strosberg, A. D.; Pietri-Rouxel, F. Function and regulation of
the â3-adrenoceptor. Trends Pharmacol. Sci. 1996, 17, 373-381.
(13) (a) Ghorbani, M.; Claus, T. H.; Himms-Hagen, J . Hypertrophy
of Brown Adipocytes in Brown and White Adipose Tissues and
Reversal of Diet-Induced Obesity in Rats Treated with a â3-
Adrenoceptor Agonist. Biochem. Pharmacol. 1997, 54, 121-131.
(29) Because they were not separable from the major diastereomers,
the contribution of the minor R,S and S,R diastereomers to the
profile of the target data presented in Tables 1 and 2 was not
ascertained. However, investigations of the R,S, S,R, and S,S
isomers of 1 have shown that R,S, S,R, and S,S diastereomers
are substantially less active at all â AR subtypes than the R,R
isomer. See the following reference. Oriowo, M. A.; Chapman,
H.; Kirkham, D. M.; Sennit, M. V.; Ruffolo, R. R., J r.; Cawthorne,