10.1002/ejic.201801108
European Journal of Inorganic Chemistry
FULL PAPER
POM] = 0.01 M in 1 mL of MeCN at 30 °C. MPS conversion and product
yields were determined by GC.
S.Thapa, B. Subramaniam, Ind. Eng. Chem. Res. 2015, 54, 4236–
4242; h) I. D. Ivanchikova, N. V. Maksimchuk, I. Y. Skobelev, V. V.
Kaichev, O. A. Kholdeeva, J. Catal. 2015, 332, 138–148; i) N. E.
Thornburg, A. B. Thompson, J. M. Notestein, ACS Catal. 2015, 5,
5077–5088; j) I. D. Ivanchikova, I. Y. Skobelev, N. V. Maksimchuk, E. A.
Paukshtis, M. V. Shashkov, O. A. Kholdeeva, J. Catal. 2017,356, 85–99.
a) M. Ziolek, I. Nowak, H. Poltorak, A. Lewandowska, I. Sobczak, Stud.
Surf. Sci. Catal. 1999, 125, 691–698; (b) M. Ziolek, I. Nowak, I.
Sobczak, A. Lewandowska, P. Decyk, J. Kujawa, Stud. Surf. Sci. Catal.
2000, 129, 813–822; (c) M. Ziolek, I. Sobczak, I. Nowak, P. Decyk, A.
Lewandowska, J. Kujawa, Micropor. Mesopor. Mater. 2000, 35–36,
195-207; (d) M. Ziolek, I. Sobczak, A. Lewandowska, I. Nowak, P.
Decyk, M. Renn, B. Jankowska, Catal. Today 2001, 70, 169–181; (e) M.
Kirihara, J. Yamamoto, T. Noguchi, A. Itou, S. Naito, Y. Hirai,
Tetrahedron 2009, 65, 10477–10484; (f) F. Carniato, C. Bisio, R. Psaro,
L. Marchese, M. Guidotti, Angew. Chem. Int. Ed. 2014, 53, 10095–
10098; (g) A. Feliczak-Guzik, A. Wawrzynczak, I. Nowak, Micropor.
Mesopor. Mater. 2015, 202, 80–89; (h) N. E. Thornburg, J. M. Notestein,
ChemCatChem 2017, 9, 3714–3724; (i) J. Dong, J. F. Hu, Y. N. Chi, Z.
G. Lin, B. Zou, S. Yang, C. L. Hill, C. W. Hu, Angew. Chem. Int. Ed.
2017, 56, 4473–4477.
Kinetic study: The reactions were initiated by addition of H2O2 (0.02-0.2
M) into the solution of Br-MPS (0.02-0.2 M), catalyst 1 (0.001-0.01 M)
and H2O (0.18-1.8 M) in 1 mL of MeCN at 60 °C. The concentration of
H2O in the experiments to determine the reaction order in H2O2 was kept
constant (0.7 M) by the addition of corresponding amounts of water. Br-
MPS consumption was determined by HPLC. Initial rates were
determined from the reaction profiles at low conversions.
[2]
Catalytic and stoichiometric oxidation of thianthrene 5-oxide in the
presence of Nb-POMs: Catalytic reactions were initiated by addition of
H2O2 (0.025 mmol) into the solution of thianthrene oxide (0.025 M) and
Nb-POM (0.0005 M) in 1 mL of MeCN at 60 °C. Stoichiometric reactions
were carried outat 60 °C by mixing 0.5 mL of the solution of Nb-POM
(0.01 M) with 0.5 mL of the solution of thianthrene oxide (0.05 M) to
achieve the following concentrations: [Nb-POM] = 0.005 M and [SSO] =
0.025 M. After 24 h, the reaction mixtures were cooled down to the room
temperature and evaporated. CHCl3 was added to the solid to dissolve
reaction products. The insoluble catalyst was filtered off. CHCl3 was
evaporated once more and deuterated CDCl3 was added to the residue
for 1H NMR analysis of the product composition. Thianthrene 5-oxide
conversion and products yields were calculated from 1H NMR spectra by
integration of corresponding signals taking into consideration that total
amount of all products is 100%.
[3]
[4]
[5]
a) M.Ziolek, I. Sobczak, P.Decyk, K. Sobanska, P.Pietrzyk, Z.Sojka,
Appl. Catal. B: Environ. 2015, 164, 288–296; b) N. E. Thornburg, S. L.
Nauert, A. B. Thompson, J. M.Notestein, ACS Catal. 2016, 6, 6124–
6134; c) D. T. Bregante, P. Priyadarshini, D. W. Flaherty, J. Catal. 2017,
348, 75–89; d) D. T. Bregante, D. W. Flaherty, J. Am. Chem. Soc. 2017,
139, 6888−6898; e) D. T. Bregante, N. E. Thornburg, J. M.Notestein, D.
W. Flaherty, ACS Catal. 2018, 8, 2995–3010; f) O. A. Kholdeeva, I.
D.Ivanchikova, N. V.Maksimchuk, I. Y.Skobelev, Catal. Today, 2018,
DOI: 10.1016/ j.cattod.2018.04.002.
Competitive study: To initiate the reaction, 0.5 mL of the solution of Nb-
POM in MeCN (0.025 M) was added to 0.5 mL of the solution of Br-MPS
(0.2 M) and MPSO (0.2 M) in MeCN at 60 °C. Concentrations of Nb-POM,
Br-MPS, and MPSO in the reaction mixture were 0.0125 M, 0.1 and 0.1
M, respectively. Br-MPS and MPSO consumption and product yields
were determined by GC.
a) N. Mizuno, K. Yamaguchi, K. Kamata, Coord. Chem. Rev. 2005, 249,
1944–1956; b) R. Neumann in: Transition Metals for Organic
Synthesis,2nd ed., Vol. 2 (Eds.: M. Beller, C. Bolm), Wiley-VCH,
Weinheim, 2004; p. 415–426; c) C. L. Hill in Comprehensive
Coordination Chemistry II; Vol. 4 (Ed.: A. G. Wedd), Elsevier Science,
New York, 2004, p. 679–759; d) C. L. Hill, O. A. Kholdeeva inLiquid
Phase Oxidation via HeterogeneousCatalysis (Eds.: M. G. Clerici, O. A.
Kholdeeva) Wiley, Hoboken, 2013; p. 263–319; e) S.-S.Wang, G.-Y.
Yang, Chem. Rev. 2015, 115, 4893–4962.
Hammett correlation: The reaction was started by addition of 0.5 mL of
(Bu4N)3[Nb(O2)W5O18] (3) solution in MeCN (0.02 M) to 0.5 mL of the
solution of p-substituted sulfide (X-MPS) in MeCN (0.1 M) at 60 °C.
Concentrations of Nb-POM and X-MPS in the reaction mixture were 0.01
M and 0.05 M, respectively. X-MPS consumption was quantified by
HPLC. Initial rates were determined from the reaction profiles at low
conversions.
a) O. A. Kholdeeva, G. M. Maksimov, R. I. Maksimovskaya, L. A.
Kovaleva, M. A. Fedotov, V. A. Grigoriev, C. L. Hill, Inorg. Chem. 2000,
39, 3828–3837; b) O. A. Kholdeeva, T. A.Trubitsina, G. M. Maksimov, A.
V.Golovin, R. I.Maksimovskaya, Inorg. Chem. 2005, 44, 1635–1642; c)
O. A Kholdeeva, Top. Catal. 2006, 40, 229–243; d) O. A. Kholdeeva, R.
I. Maksimovskaya, J. Mol. Catal. A: Chem. 2007, 262, 7–24; e) O. A.
Kholdeeva, Eur. J. Inorg. Chem. 2013, 1595–1605; f) Guillemot, G.;
Matricardi, E.; Chamoreau, L.-M.; Thouvenot, R.; Proust, A. ACS Catal.
2015, 5, 7415−7423; g) T. Zhang, L. Mazaud, L.-M. Chamoreau, C.
Paris, G. Guillemot, A. Proust, ACS Catal. 2018, 8, 2330–2342.
Acknowledgments
The authors thank Dr. I. E. Soshnikov and Dr. R. I.
Maksimovskaya for 1H and 183W NMR measurements,
respetively; V. Yu. Evtushok for collecting IR spectra, and V. A.
Utkin for product identification by GC–MS. This work was carried
out in the framework of budget project No. АААА-А17-
117041710080-4 for Boreskov Institute of Catalysis and partially
supported by the Russian Foundation for Basic Research
(RFBR grant N 16-03-00827).
[6]
[7]
N. V. Maksimchuk, G. M. Maksimov, V. Yu. Evtushok, I. D. Ivanchikova,
Yu. A. Chesalov, R. I. Maksimovskaya, O. A. Kholdeeva, A. Solé-Daura,
J. M. Poblet, J. J. Carbó, ACS Catal. 2018, 8, 9722–9737.
(a) F. Di Furia, G. Modena, Pure & Appl. Chem. 1982, 54, 1853–1866;
(b) M. Bonchio, V. Conte, F. Di Furia, G. Modena, C. Padovani, M.
Sivak, Res. Chem. Intermed. 1989, 12, 111–124; (c) E. Baciocchi, D.
Intini, A. Piermattei, C. Rol, R. Ruzziconi, Gazz. Chim. Ital., 1989, 119,
649–652; (d) E. Blée, F. Schuber, Biochemistry 1989, 28, 4962–4967;
(e) J. H. Acquaye, J. G. Muller, K. J. Takeuchi, Inorg. Chem. 1993, 32,
160–165; (f) A. Chellamani, N. M. I. Alhaji, S. Rajagopal, J. Chem. Soc.,
Perkin Trans. 2 1997, 299–302; (g) T. K. Ganesan, S. Rajagopal, J. B.
Bharathy, A. I. M. Sheriff,J. Org. Chem. 1998, 63, 21–26; (h) Y. Goto, T.
Matsui, S. Ozaki, Y. Watanabe, S. Fukuzumi, J. Am. Chem. Soc. 1999,
121, 9497–9502; (i) C. R. Jackson Lepage, L. Mihichuk, D. G. Lee, Can.
J. Chem. 2003, 81, 75–80; (j) A. M. I. Jayaseeli, S. Rajagopal, J. Mol.
Catal. A: Chem. 2009, 309, 103–110; (k) A. M. Khenkin, G. Leitus, R.
Neumann, J. Am. Chem. Soc. 2010, 132, 11446–11448; (l) Y.
Watanabe, T. Iyanagi, S. Oae, Tetrahedron Lett. 1980, 21, 3685–3688.
Keywords: sulfoxidation • niobium • polyoxometalate • Lindqvist
structure • hydrogen peroxide
[1]
a) I. Nowak, B. Kilos, M. Ziolek, A. Lewandowska, Catal Today 2003,
78, 487–498; b) I. Nowak and M. Ziolek, Micropor. Mesopor. Mater.
2005, 78, 281–288; c) F. Somma, G. Strukul, Catal. Lett. 2006, 107,
73–81; d) A. Feliczak-Guzik, I. Nowak, Catal Today 2009,142, 288–
292; e) A. Gallo, C. Tiozzo, R. Psaro, F. Carniato, M. Guidotti, J. Catal.
2013, 298, 77–83; f) C. Tiozzo, C. Bisio, F. Carniato, M. Guidotti, Catal.
Today 2014, 235, 49–57; g) A. Ramanathan, H. Zhu, R. Maheswari, P.
This article is protected by copyright. All rights reserved.