Journal of
MASS
V. Naresh Chary et al.
[12] S. Bouatra, F. Aziat, R. Mandal, A. C. Guo, M. R. Wilson, T. C. Bjorndahl,
R. Krishnamurthy, F. Saleem, P. Liu, C. Knox, Z. T. Dame, J. Poelzer,
J. Huynh, F. S. Yallou, N. Psychogios, E. Dong, C. Roehring,
D. S. Wishart, R. Bogumil. The human urine metabolome. PLoS One
2013, 8, e73076, 10. 1371/journal.pone.0073076.
[13] S. Prabhakar, N. Javad, H. Yetrib, P. H. Eric, V. Akos. In vitro analysis of
metabolites from the untreated tissue of Torpedo californica electric
organ by mid-infrared laser ablation electrospray ionization mass
spectrometry. Metabolomics 2009, 5, 263.
[14] G. Kevin, J. Chengjie, L. Liang. Stable-isotope dimethylation labeling
combined with LC-ESI MS for quantification of amine-containing
metabolites in biological samples. Anal. Chem. 2007, 79, 8631.
[15] V. Naresh Chary, Ch. Dinesh Kumar, M. Vairamani, S. Prabhakar.
Characterization of amino acid-derived betaines by electrospray
ionization tandem mass spectrometry. J. Mass Spectrom. 2012, 47, 79.
[16] D. G. Dearborn, N. Jentoft. Protein labeling by reductive alkylation.
Methods Enzymol. 1983, 91, 570.
[17] N. N. Dookeran, T. Yalcin, A. G. Harrison. Fragmentation reactions of
protonated α-amino acids. J. Mass Spectrom. 1996, 31, 500.
[18] V. Vorsa, T. Kono, K. F. Willey, N. Winograd. Femtosecond
photoionization of ion beam desorbed aliphatic and aromatic amino
acids: fragmentation via a-cleavage reactions. J. Phys. Chem. B 1999,
103, 7889.
[19] F. Rogalewicz, Y. Hoppilliard, G. Ohanessian. Fragmentation mechanisms
of α-amino acids protonated under electrospray ionization: a collisional
activation and an ab initio theoretical study. Int. J. Mass Spectrom. 2000,
195-196, 565.
[20] M. Piraud, C. Vianey-Saban, K. Petritis, C. Elfakir, J. P. Steghens, A. Morla,
D. Bouchu. ESI-MS/MS analysis of underivatised amino acids: a new tool
for the diagnosis of inherited disorders of amino acid metabolism.
Fragmentation study of 79 molecules of biological interest in positive
and negative ionisation mode. Rapid Commun. Mass Spectrom. 2003,
17, 1297.
[21] H. E. Aribi, G. Orlova, A. C. Hopkinson, K. W. Michael Siu. Gas-phase
fragmentation reactions of protonated aromatic amino acids:
concomitant and consecutive neutral eliminations and radical cation
formations. J. Phys. Chem. A 2004, 108, 3844.
[22] S. S. Choi, M. J. Song, O. B. Kim, Y. Kim. Fragmentation patterns of
protonated amino acids formed by atmospheric pressure chemical
ionization. Rapid Commun. Mass Spectrom. 2013, 27, 143.
[23] N. F. Sheard, S. H. Zeisel. Choline: an essential dietary nutrient? Nutrition
1989, 5, 1.
by ESI-MS and ESI-MS/MS. The MS/MS of protonated N,N-dimethyl
amino acids and their immonium ions showed structure indicative
product ions. This study also shows that isomeric/isobaric natural
amino acids can be clearly differentiated from dimethyl amino
acids in biological matrices. The nature of amino acid (aliphatic,
aromatic, acidic and basic) and methyl groups on nitrogen is very
much reflected in the fragmentation of protonated N,N-dimethyl
amino acids and their immonium ions. The immonium ions
formed from the isomeric N,N-dimethyl amino acids and free amino
acids also showed clear-cut differences in their CID spectra. This
study also helps in the discrimination of isomeric immonium ions
(e.g., leucine/isoleucine; lysine/glutamine) and screening of methyl-
ated peptides/proteins in post translation modification studies
using MS/MS of immonium ions. The methodology can also be
applied to determine the N-terminal amino acid of peptides.
Acknowledgements
The authors thank Dr M. Lakshmi Kantam, Director, CSIR-IICT for
facilities and encouragement. The authors acknowledge financial
support to the CSC-0110 (CMET) project by the Council of Scientific
and Industrial Research (CSIR), New Delhi. V. N. C and C. D.
thank CSIR, New Delhi for providing a senior research fellowship
and B. S. R. thank UGC, New Delhi for providing a junior research
fellowship.
References
[1] S. Urayama, W. Zou, K. Brooks, V. Tolstikov. Comprehensive mass
spectrometry based metabolic profiling of blood plasma reveals
potent discriminatory classifiers of pancreatic cancer. Rapid Commun.
Mass Spec. 2010, 24, 613.
[2] T. Selmer, J. Kahnt, M. Goubeaud, S. Shima, W. Grabarse. The
biosynthesis of methylated amino acids in the active site region of
methyl-coenzyme M reductase. J. Biol. Chem. 2000, 275, 3755.
[3] A. Sreekumar, L. M. Poisson, T. M. Rajendiran, A. P. Khan, Q. Cao, J. Yu,
B. Laxman, R. Mehra, R. J. Lonigro, Y. Li, M. K. Nyati, A. Ahsan,
S. Kalyana Sundaram, B. Han, X. Cao, J. Byun, G. S. Omenn, D. Ghosh,
S. Pennathur, D. C. Alexander, A. Berger, J. R. Shuster, J. T. Wei,
S. Varambally, C. Beecher, A. M. Chinnaiyan. Metabolomic profiles
delineate potential role for sarcosine in prostate cancer progression.
Nature 2009, 457, 910.
[4] D. O. Mcgregor, W. J. Dellow, M. Lever, P. M. George, R. A. Robson,
S. T. Chambers. Dimethylglycine accumulates in uremia and predicts
elevated plasma homocysteine concentrations. Kidney Int. 2001, 59,
2267.
[5] F. Kronenberg. Emerging risk factors and markers of chronic kidney
disease progression. Nat. Rev. Nephrol. 2009, 5, 677.
[24] M. D. Laryea, F. Steinhagen, S. Pawliczek, U. Wendel. Simple method for
the routine determination of betaine and N,N-dimethylglycine in blood
and urine. Clin. Chem. 1998, 44, 1937.
[25] P. Krishna, S. Prabhakar, M. Vairamani. Differentiation of derivatized
leucine and isoleucine by tandem mass spectrometry under liquid
secondary ion mass spectral conditions. Rapid Commun. Mass
Spectrom. 1998, 12, 1429.
[26] P. Y. Iris Shek, Z. Junfang, Ke. Yuyong, K. W. Michael Siu, A. C. Hopkinson.
Fragmentations of protonated arginine, lysine and their methylated
derivatives: concomitant losses of carbon monoxide or carbon
dioxide and an amine. J. Phys. Chem. A 2006, 110, 8282.
[27] D. Saigusa, M. Takahashi, Y. Kanemistu, A. Ishida, T. Abe, T. Yamakuni,
N. Suzuki, Y. Tomioka. Determination of asymmetric dimethylarginine
and symmetric dimethylarginine in biological samples of mice using
LC/MS/MS. Am. J. Anal. Chem. 2011, 2, 303.
[6] J. T. Kielstein, D. Fliser, H. Veldink. Asymmetric dimethylarginine and
symmetric dimethylarginine: axis of evil or useful alliance ? Semin.
Dial. 2009, 22, 346.
[7] L. Tarnow, P. Hovind, T. Teerlink, C. D. A. Stehouwer, H. H. Parving.
[28] A. L. Papayannopoulos. The interpretation of collision-induced
dissociation tandem mass spectra of peptides. Mass Spectrom. Rev.
1995, 14, 49.
[29] T. Madden, K. J. Welham, M. A. Baldwin. Factors affecting immonium
ion intensities in the high-energy collision-induced decomposition
spectra of peptides. Org. Mass Spectrom. 1991, 26, 443.
[30] A. M. Falick, W. M. Hines, K. F. Medzihradszky, M. A. Baldwin,
B. W. Gibson. Low-mass ions produced from peptides by high-energy
collision-induced dissociation in tandem mass spectrometry. J. Am.
Soc. Mass Spectrom. 1993, 4, 882.
[31] L. J. Hohmann, J. K. Eng, A. Gemmill, J. Klimek, O. Vitek. Quantification of
the compositional information provided by immonium ions on a
quadrupole-time-of-flight mass spectrometer. Anal. Chem. 2008, 80,
5596.
Elevated plasma asymmetric dimethylarginine as
a marker of
cardiovascular morbidity in early diabetic nephropathy in type 1
diabetes. Diabetes Care 2004, 27, 765.
[8] S. Abhary, N. Kasmeridis, K. P. Burdon, A. Kuot, M. J. Whiting, W. P. Yew,
N. Petrovsky, J. E. Craig. Diabetic retinopathy is associated with
elevated serum asymmetric and symmetric dimethylarginines.
Diabetes Care 2009, 32, 2084.
[9] Y. Kakimoto, S. Akazawa. Isolation and identification of Ng, Ng-and
Ng,N’g-dimethylarginine, Nε-mono-, di-, trimethyllysine, and
glucosylgalactosyl- and galactosyl-δ-hydroxylysine from human
urine. J. Biol. Chem. 1970, 245, 5751.
[10] H. Kalasz, G. H. Kovacs, J. Nagy, E. Tyihak, W. T. Barnes. Identification of
N-methylated basic amino acids from human adult teeth. J. Den. Res.
1978, 57, 128.
[11] T. Mara, G. Erika, S. Gyula, F. George. HPLC determination of acidic
D-amino acids and their N-methyl derivatives in biological tissues.
Biomed. Chromatogr. 2009, 23, 581.
[32] J. N. Louris, L. G. Wright, R. G. Cooks, A. E. Schoen. New scan modes
accessed with a hybrid mass spectrometer. Anal. Chem. 1985, 57, 2918.
[33] K. Zhang, M. Y. Peter, B. Chandrasekhar, R. New, R. Kondrat.
Differentiation between peptides containing acetylated or tri-
wileyonlinelibrary.com/journal/jms
Copyright © 2015 John Wiley & Sons, Ltd.
J. Mass Spectrom. 2015, 50, 771–781