8872
J. Am. Chem. Soc. 2001, 123, 8872-8873
Scheme 1
A New Synthesis of Cyclobutanones: Highly
Selective Carbonylation of Titanacyclobutane
Complexes Prepared by Free Radical Alkylation
Charles A. G. Carter, Grace Greidanus, Jian-Xin Chen, and
Jeffrey M. Stryker*
Department of Chemistry, UniVersity of Alberta
Edmonton, Alberta, T6G 2G2 Canada
ReceiVed March 22, 2001
ReVised Manuscript ReceiVed July 18, 2001
under appropriate conditions, be controlled to incorporate a single
equivalent of CO, producing cyclobutanones exclusively.
As anticipated, permethyltitanacyclobutane complexes 1 un-
dergo the Bercaw carbonylation at low temperature under CO
pressure (-78 °C, 60 psi).9 Conducting the carbonylation at higher
temperature and low pressure, however, promotes the intramo-
lecular migration (II f IV) over the intermolecular carbonylation
(II f III) and leads to the formation of organic cyclobutanones
exclusively in high yield (Table 1).10,11 The organometallic product
of the reaction, (C5Me5)2Ti(CO)2,12 is recovered in high yield by
precipitation from the nonpolar reaction medium. The low yield
obtained for carbonylation of â-allyltitanacyclobutane complex
2e arises from the thermal instability of this compound above
room temperature.13
For synthetic applications, titanacyclobutane complexes 1 can
be prepared without isolation of the η3-allyltitanium intermediate,
using SmI2‚THF to mediate both the reductive allylation and
generation of the alkyl radical (eq 1). In contrast to the reactions
of isolated η3-allyltitanium complexes with unstabilized organic
radicals generated by using SmI2,4a the one-pot preparation does
Cyclobutanones and related carbocyclic four-membered ring
compounds constitute an important class of synthetic intermedi-
ates1 and polymer precursors.2 More recently, cyclobutane deriva-
tives have emerged as significant in terms of biological and
pharmaceutical activity.3
In this communication, we report general new methodology
for the synthesis of substituted cyclobutanones, based on the
highly selective mono-carbonylation of titanacyclobutane com-
plexes, a new reactivity pattern for metallacyclobutane complexes
of the early transition metals. In conjunction with the recent
development of titanacyclobutane synthesis by free radical
alkylation of η3-allyltitanium(III) complexes,4 this carbonylation
constitutes a convergent and stereoselective new approach to the
construction of cyclobutanones.
Carbonylation converts metallacyclopentane, metallacyclopen-
tene, and related early transition metal complexes into syntheti-
cally valuable five-membered ring compounds via the insertion
of one equivalent of carbon monoxide and subsequent reductive
elimination.5-7 In contrast, metallacyclobutane complexes of the
early transition metals instead undergo the Bercaw carbonylation,
incorporating two equiValents of carbon monoxide to give
cyclopentendiolate complexes (e.g., III, Scheme 1).8 Here we
report that the carbonylation of titanacyclobutane complexes can,
(6) Cyclopentenones, recent and leading references: (a) Ti: Hicks, F. A.;
Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 7026. Sturla, S. J.; Buchwald,
S. L. J. Org. Chem. 1999, 64, 5547. Hicks, F. A.; Kablaoui, N. M.; Buchwald,
S. L. J. Am. Chem. Soc. 1999, 121, 5881 and references therein. Cohen, S.
A.; Bercaw, J. E. Organometallics 1985, 4, 1006. Bristow, G. S.; Lappert,
M. F.; Martin, T. R.; Atwood, J. L.; Hunter, W. F. J. Chem. Soc., Dalton
Trans. 1984, 399. (b) Zr: Negishi, E.-i.; Holmes, S. J.; Tour, J. M.; Miller,
J. A.; Cederbaum, F. E.; Swanson, D. R.; Takahashi, T. J. Am. Chem. Soc.
1989, 111, 3336. Negishi, E.-i. In ComprehensiVe Organic Synthesis; Trost,
B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 5, p 1163. Buchwald,
S. L.; Lum, R. T.; Fisher, R. A.; Davis, W. M. J. Am. Chem. Soc. 1989, 111,
9113. Probert, G. D.; Whitby, R. J.; Coote, S. J. Tetrahedron Lett. 1995, 36,
4113, and references therein. Erker, G.; Engel, K.; Kruger, C.; Chiang, A.-P.
Chem. Ber. 1982, 115, 3311.
(7) γ-Lactones, leading references: Kablaoui, N. Hicks, F. A.; Buchwald,
S. L.; J. Am. Chem. Soc. 1997, 119, 4424. Crowe, W. E.; Vu, A. T. J. Am.
Chem. Soc. 1996, 118, 5508. Mashima, K.; Haraguchi, H.; Ohyoshi, A.; Sakai,
N.; Takaya, H. Organometallics 1991, 10, 2731.
(8) (a) See ref 5c and the following: Roddick, D. M.; Bercaw, J. E. Chem.
Ber. 1989, 122, 1579. (b) Brown-Wensley, K. A.; Buchwald, S. L.; Cannizzo,
L.; Clawson, L.; Ho, S.; Meinhardt, D.; Stille, J. R.; Straus, D.; Grubbs, R.
H. Pure Appl. Chem.1983, 55, 1733. (c) Dennehy, R. D.; Whitby, R. J. J.
Chem. Soc., Chem. Commun. 1990, 1060. (d) Petersen, J. L.; Egan, J. W., Jr.
Organometallics 1987, 6, 2007. (e) Beckhaus, R.; Wilbrandt, D.; Flatau, S.;
Bohmer, W.-H. J. Organomet. Chem. 1992, 423, 211. (f) Tjaden, E. B.;
Stryker, J. M. J. Am. Chem. Soc. 1993, 115, 2083.
(9) The synthesis of cyclopentenediolates and organic cyclopentanoid
derivatives is detailed in a separate account: Carter, C. A. G.; Casty, G. L.;
Stryker, J. M. Synlett 2001, 1046.
(10) Experimental procedures and complete characterization of all new
compounds are provided as Supporting Information.
(11) Two isolated instances of single carbonylation in early transition metal
metallacyclobutane complexes have been previously observed, both providing
complexed η2-cyclobutanone rather than the free organic. (a) Hf: Erker, G.;
Czisch, P.; Schlund, R.; Angermund, K.; Kruger, C. Angew. Chem., Int. Ed.
Engl. 1986, 25, 364. (b) Ta: Rietveld, M. H. P.; Hagen, H.; van de Water,
L.; Grove, D. M.; Kooijman, H.; Veldman, N.; Spek, A. L.; van Koten, G.
Organometallics 1997, 16, 168.
* Author for correspondence. Telephone: (780) 492-3891. E-mail:
(1) Reviews: (a) Bellus, D.; Ernst, B. Angew. Chem., Int. Ed. Engl. 1988,
27, 797. (b) Lee-Ruff, E. In AdVances in Strain in Organic Chemistry; Halton,
B., Ed.; JAI Press: Greenwich, CT, 1991; Vol. 1. (c) Nemoto, H.; Fukumoto,
K. Synlett 1997, 863. Recent and leading references: (d) Murakami, M.;
Tsuruta, T.; Ito, Y. Angew. Chem., Int. Ed. 2000, 39, 2484. (e) Brown, B.;
Hegedus, L. S. J. Org. Chem. 2000, 65, 1865. (f) Hegedus, L. S.; Ranslow,
P. B. Synthesis 2000, 953. (g) Riches, A. G.; Wernersbach, L. A.; Hegedus,
L. S. J. Org. Chem. 1998, 63, 4691. (h) Brown, R. C. D.; Keily, J.; Karim, R.
Tetrahedron Lett. 2000, 41, 3247. (i) Miyata, J.; Nemoto, H.; Ihara, M. J.
Org. Chem. 2000, 65, 504. (j) Johnston, D.; McCusker, C. F.; Muir, K.; Proctor,
D. J. J. Chem. Soc., Perkin Trans. 1 2000, 681. (k) Jiang, W.; Fuertes, M. J.
Wulff, W. D. Tetrahedron 2000, 56, 2183. (l) Weber, J.; Haslinger, U.; Brinker,
U. J. Org. Chem. 1999, 64, 6085. (m) Vinson, N. A.; Day, C. S.; Welker, M.
E.; Guzei, I.; Rheingold, A. L. Organometallics 1999, 18, 1824.
(2) Kniep, C. S.; Padius, A. B.; Hall, H. K., Jr. Tetrahedron 2000, 56,
4279, and references therein.
(3) (a) Cyclobut-A and related anti-viral compounds: Norbeck, D. W.;
Kern, E.; Hayashi, S.; Rosenbrook, W.; Sham, H.; Herrin, T.; Plattner, J. J.;
Erisckson, J. Clement, J.; Swanson, R.; Shipkowitz, N.; Hardy, D.; Marsh,
K.; Arnett, G.; Shannon, W.; Broder, S.; Mitsuya, H. J. Med. Chem. 1990,
33, 1281. Brown, B.; Hegedus, L. S. J. Org. Chem. 1998, 63, 8012 and
references therein. Frieden, M.; Giraud, M.; Rees, C. B.; Song, Q. L. J. Chem.
Soc., Perkin Trans. 1 1998, 2827. (b) Prasit, P. Rideneau, D. Ann. Rep. Med.
Chem. 1997, 32, 211. Friesen, R. W.; Dube, D.; Fortin, R.; Frenette, R.;
Prescott, S.; Cromlish, W.; Greig, G. M.; Kargman, S.; Wong, E.; Chan, C.
C.; Gordon, R.; Xu, L. J.; Rideneau, D. Bioorg. Med. Chem. Lett. 1996, 6,
2677. (c) Delincee, H.; PoolZobel, B. L. Radiat. Phys. Chem. 1998, 52, 39.
(4) (a) Casty, G. L.; Stryker, J. M. J. Am. Chem. Soc. 1995, 117, 7814. (b)
Ogoshi, S.; Stryker, J. M. J. Am. Chem. Soc. 1998, 120, 3514. (c) Carter, C.
A. G.; McDonald, R.; Stryker, J. M. Organometallics 1999, 18, 820. (d)
Greidanus, G.; McDonald, R.; Stryker, J. M., Organometallics 2001, 20, 2942.
(5) Cyclopentanones: (a) McDermott, J. X.; Wilson, M. E.; Whitesides,
G. M. J. Am. Chem. Soc. 1976, 98, 6529. (b) Grubbs, R. H.; Miyashita, A.;
Liu, M.; Burk, P. J. Am. Chem. Soc. 1978, 100, 2418. (c) Manriquez, J. M.;
McAllister, D. R.; Sanner, R. D.; Bercaw, J. E. J. Am. Chem. Soc. 1978, 100,
2716. (d) Erker, G. Acc. Chem. Res. 1984, 17, 103.
(12) Bercaw, J. E.; Marvich, R. H.; Bell, L. G.; Brintzinger, H. H. J. Am.
Chem. Soc. 1972, 94, 1219.
(13) The 3-allyl complex 2e decomposes by homolysis of the â-carbon-
carbon bond, an unprecedented pathway for titanacyclobutane decomposi-
tion: Greidanus, G.; Stryker, J. M. Manuscript in preparation.
10.1021/ja0158657 CCC: $20.00 © 2001 American Chemical Society
Published on Web 08/16/2001