ACS Catalysis
Page 10 of 12
1
2
3
4
Asymmetric Mild C-H Activation and Dynamic Kinetic Resolution.
Am. Chem. Soc. 2011, 133, 19598–19601.
5
6
7
8
Angew. Chem., Int. Ed. 2014, 53, 13871–13875. b) Dherbassy, Q.;
Schwertz, G.; Chessé, M.; Hazra, C. K.; Wencel-Delord, J.;
Colobert, F. 1,1,1,3,3,3-Hexafluoroisopropanol as a Remarkable
Medium for Atroposelective Sulfoxide-Directed Fujiwara-Moritani
Reaction with Acrylates and Styrenes. Chem. Eur. J. 2016, 22,
1735–1743. c) Dherbassy, Q.; Wencel-Delord, J.; Colobert, F.
(20) Shen, P.-X.; Hu, L.; Shao, Q.; Hong, K.; Yu, J.-Q. Pd(II)-Catalyzed
3
Enantioselective C(Sp )–H Arylation of Free Carboxylic Acids. J.
Am. Chem. Soc. 2018, 140, 6545–6549.
(21) For further optimisation study see the SI.
(22) (1R,2S)-8:
CCDC-1859147;
contain
the
supplementary
9
crystallographic data for this paper. These data can be obtained
from the Cambridge Crystallographic Data.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Asymmetric C–H Activation as
a Modern Strategy towards
Expedient Synthesis of Steganone. Tetrahedron 2016, 72, 5238–
5245. d) Dherbassy, Q.; Djukic, J.-P.; Wencel-Delord, J.; Colobert,
F. Two Stereoinduction Events in One C−H Activation Step: A Route
towards Terphenyl Ligands with Two Atropisomeric Axes. Angew.
Chem., Int. Ed. 2018, 57, 4668–4672.
(23) Pei, Q.-L.; Che, G.-D.; Zhu, R.-Y.; He, J.; Yu, J.-Q. An Epoxide-
Mediated Deprotection Method for Acidic Amide Auxiliary. Org. Lett.
2017, 19, 5860–5863.
(24) a) Wu, Q.-F.; Shen, P.-X.; He, J.; Wang, X.-B.; Zhang, F.; Shao, Q.;
Zhu, R.-Y.; Mapelli, C.; Qiao, J. X.; Poss, M. A.; et al. Formation of
3
(13) For details see SI.
α-Chiral Centers by Asymmetric β-C(Sp
)–H Arylation,
(14) Zucca, C.; Bravo, P.; Corradi, E.; Meille, S.; Volonterio, A.; Zanda,
M. On the Addition of Lithium Methyl p-Tolyl Sulfoxide to N-(PMP)-
Aryladimines. Molecules 2001, 6, 424–432.
Alkenylation, and Alkynylation. Science 2017, 355 (6324), 499–503.
b) Giri, R.; Lan, Y.; Liu, P.; Houk, K. N.; Yu, J.-Q. Understanding
Reactivity
and
Stereoselectivity
in
Palladium-Catalyzed
3
(15) For selected reviews on asymmetric C-H activation see : : a) Saint-
Denis, T. G.; Zhu, R.-Y.; Chen, G.; Wu, Q.-F.; Yu, J.-Q.
Diastereoselective Sp
C–H Bond Activation: Intermediate
Characterization and Computational Studies. J. Am. Chem. Soc.
2012, 134, 14118–14126. c) Cheng, G.-J.; Chen, P.; Sun, T.-Y.;
Zhang, X.; Yu, J.-Q.; Wu, Y.-D. A Combined IM-MS/DFT Study on
[Pd(MPAA)]-Catalyzed Enantioselective C-H Activation: Relay of
Chirality through a Rigid Framework. Chem. Eur. J. 2015, 21,
11180–11188.
3
Enantioselective C(Sp ) ‒ H Bond Activation by Chiral Transition
Metal Catalysts. Science 2018, 359, 759-770. b) Zheng, C.; You, S.-
L. Recent Development of Direct Asymmetric Functionalization of
Inert C–H Bonds. RSC Adv. 2014, 4, 6173–6214. c) Ye, B.; Cramer,
N. Chiral Cyclopentadienyls: Enabling Ligands for Asymmetric
Rh(III)-Catalyzed C–H Functionalizations. Acc. Chem. Res. 2015,
48, 1308–1318. d) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.;
Cramer, N. Catalytic Enantioselective Transformations Involving C–
H Bond Cleavage by Transition-Metal Complexes. Chem. Rev.
2017, 117, 8908–8976. e) Wencel-Delord, J.; Colobert, F.
Asymmetric C(sp2)-H Activation. Chem. Eur. J. 2013, 19, 14010–
14017.
(25) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function
in dispersion corrected density functional theory. J. Comp. Chem.
2011, 32, 1456-1465. b) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg,
H. A consistent and accurate ab initio parametrization of density
functional dispersion correction (DFT-D) for the 94 elements H-Pu.
J. Chem. Phys. 2010, 132, 154104-154119.
(26) Lu, Q.; Neese, F.; Bistoni, G. Formation of Agostic Structures
Driven by London Dispersion. Angew. Chem., Int. Ed. 2018, 57,
4760-4764.
(16) For selected reviews on C(sp3)-H activation see : a) Banerjee,
Asarkar, S.; Patel, B. K. C–H Functionalisation of Cycloalkanes.
Org. Biomol. Chem. 2017, 15, 505–530. b) He, J.; Wasa, M.; Chan,
K. S. L.; Shao, Q.; Yu, J.-Q. Palladium-Catalyzed Transformations
of Alkyl C–H Bonds. Chem. Rev. 2017, 117, 8754-8786. c) Qiu, G.;
Wu, J. Transition Metal-Catalyzed Direct Remote C–H
Functionalization of Alkyl Groups via C(Sp3)–H Bond Activation.
Org. Chem. Front. 2015, 2, 169–178. d) Yang, X.; Shan, G.; Wang,
L.; Rao, Y. Recent Advances in Transition Metal (Pd, Ni)-Catalyzed
C(Sp3)H Bond Activation with Bidentate Directing Groups.
Tetrahedron Lett. 2016, 57, 819–836. e) Baudoin, O. Ring
Construction by Palladium(0)-Catalyzed C(Sp3)–H Activation. Acc.
Chem. Res. 2017, 50, 1114–1123.
(27) a) van Lenthe, E.; Ehlers, A.; Baerends, E.-J. Geometry
optimizations in the zero order regular approximation for relativistic
effects. J. Chem. Phys. 1999, 110, 8943-8953. b) van Lenthe, E.;
Baerends, E. J.; Snijders, J. G. Relativistic total energy using regular
approximations. J. Chem. Phys. 1994, 101, 9783-9792. c) van
Lenthe, E.; Baerends, E. J.; Snijders, J. G. Relativistic regular two-
component Hamiltonians. J. Chem. Phys. 1993, 99, 4597-4610.
(28) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
(29) a) Hamdaoui, M.; Ney, M.; Sarda, V.; Karmazin, L.; Bailly, C.;
Sieffert, N.; Dohm, S.; Hansen, A.; Grimme, S.; Djukic, J.-P.
Evidence of a donor–acceptor (Ir–H)→SiR3 interaction in a trapped
Ir(III) silane catalytic intermediate. Organometallics 2016, 35, 2207-
2223. b) Ho Binh, D.; Milovanovic, M.; Puertes-Mico, J.; Hamdaoui,
M.; Zaric, S. D.; Djukic, J.-P. Is the R3Si moiety in metal-silyl
complexes a Z ligand ? An answer from the interaction energy.
Chem. Eur. J. 2017, 23, 17058–17069. c) Hamdaoui, M.;
Desrousseaux, C.; Habbita, H.; Djukic, J.-P. Iridacycles as catalysts
for the autotandem conversion of nitriles into amines by
(17) For the selected reviews see: a) Mizuno, A.; Matsui, K.; Shuto, S.
From Peptides to Peptidomimetics:
A Strategy Based on the
Structural Features of Cyclopropane. Chem. Eur. J. 2017, 23,
14394–14409. b) Talele, T. T. The “Cyclopropyl Fragment” Is a
Versatile Player That Frequently Appears in Preclinical/Clinical Drug
Molecules. J. Med. Chem. 2016, 59, 8712–8756. c) Donaldson, W.
Synthesis of Cyclopropane Containing Natural Products.
Tetrahedron 2001, 57, 8589–8627. d) Chen, D.-Y.; Pouwer, R. H.;
Richard, J. -A. Recent advances in the total synthesis of
cyclopropane-containing natural products. Chem. Soc. Rev. 2012,
41, 4631-4642. e) Fan, Y.-Y.; Gao, X.-H.; Yue, J.-M. Attractive
natural products with strained cyclopropane and/or cyclobutene ring
systems. Sci. China Chem. 2016, 59, 1126-1141.
hydrosilylation:
experimental
investigation
and
scope.
Organometallics 2017, 36, 4864-4882.
(30) Klamt, A.; Schuurmann, G. COSMO: a new approach to dielectric
screening in solvents with explicit expressions for the screening
energy and its gradient. J. Chem. Soc., Perkin Trans. 2 1993, 799-
805.
(18) Chan, K. S. L.; Fu, H.-Y.; Yu, J.-Q. Palladium(II)-Catalyzed Highly
Enantioselective C–H Arylation of Cyclopropylmethylamines. J. Am.
Chem. Soc. 2015, 137, 2042–2046.
(31) a) Contreras-García, J.; Johnson, E. R.; Keinan, S.; Chaudret, R.;
Piquemal, J.-P.; Beratan, D. N.; Yang, W. NCIPLOT: A Program for
Plotting Noncovalent Interaction Regions. J. Chem. Theor. Comput.
2011, 7, 625–632. b) Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.;
(19) Wasa, M.; Engle, K. M.; Lin, D. W.; Yoo, E. J.; Yu, J.-Q. Pd(II)-
Catalyzed Enantioselective C–H Activation of Cyclopropanes. J.
10
ACS Paragon Plus Environment